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ABSTRACT

Stars exhibit a range of variability periods that depend on their mass, age, and evolutionary stage.
For space-based photometric data, convolutional neural networks (CNNs) have demonstrated success in
recovering and measuring periodic variability from photometric missions like Kepler and TESS. All-sky
ground-based surveys can have similar if not longer baselines than space-based missions, however these
datasets are more challenging to work with due to irregular sampling, more complex systematics, and
larger data gaps. In this work, we demonstrate that CNNs can be used to derive variability periods from
ground-based surveys. From the All-Sky Automated Survey for Supernovae (ASAS-SN) we recover
208,260 variability periods between 1 − 30 days, approximately 60% of which are new detections.
We recover periods for active RSCVn, anomalous sub-subgiants, and cool dwarfs that are consistent
with previously measured rotation periods, while periods for stars above the Kraft break are generally
spurious. We also identify periodic signals in tens of thousands of giants stars which correspond to
frequencies of stellar oscillations rather than rotation. Our results highlight that CNNs can be used
on sparsely sampled ground-based photometry and may prove useful for upcoming observations from
the Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST).

Keywords: Stellar rotation (1629) — Light curves (918) — Convolutional neural networks (1938) —
Time series analysis (1916) — Irregular cadence (1953)

1. INTRODUCTION

Stellar evolve over time. Stars inherit angular momen-
tum from initial cloud collapse, and low mass stars lose
their angular momentum in stellar winds (A. Skumanich
1972; S. Matt et al. 2015), similar to our own solar wind
(E. Parker 1958; E. Weber & L. Davis 1967). Compre-
hensive analyses of single star rotational evolution has
demonstrated that many other phenomena drive inte-
rior angular momentum transport such as meridional
circulation or magnetic instabilities (e.g. A. Maeder
& G. Meynet 2000; S. Mathis 2013; C. Aerts et al.
2019). More recent studies have suggested that there
is still much to uncover about the rotational evolution
of low-mass stars, including truncated braking (J. van
Saders et al. 2016), interior behavior at the fully convec-
tive boundary (F. Chiti et al. 2024), stalled spin down
(J. Curtis et al. 2020), the effect of spots (L. Cao &
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M. Pinsonneault 2022), core-envelope angular momen-
tum transfer in cool stars (L. Cao et al. 2023), radius
inflation (G. Somers & K. Stassun 2017), the distribu-
tion of rotation rates at birth (C. Coker et al. 2016;
G. Somers et al. 2017), and the consequences of binarity
(J. Tayar et al. 2015; A. Phillips et al. 2023; J. Yu et al.
2024).
Starting with the Sun, observers have used the pas-

sage of spots across the line of sight and the resulting
change in surface brightness to estimate a solar rota-
tion period (R. Carrington 1863). Dedicated monitoring
campaigns can regularly monitor the brightness of stars,
allowing observers to understand the rotational proper-
ties of stars like the Sun (S. Bhattacharya et al. 2021),
young stars (P. Hartigan et al. 2011; A. Feinstein et al.
2020; S. Douglas et al. 2024), stars in clusters (S. Dou-
glas et al. 2017; L. Long et al. 2023; L. Sha et al. 2024),
low-mass field M dwarfs (J. Irwin et al. 2011; E. New-
ton et al. 2016), and more massive stars (J. Sikora et al.
2019), among others. Expansive repositories of photo-
metric light curves from space-based surveys at high ca-
dence and with minimal data gaps, like Convection, Ro-
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tation, and planetary Transits (CoRoT, M. Auvergne
et al. 2009), Kepler (W. Borucki et al. 2010), Kepler
Second Light (K2, S. Howell et al. 2014), and the Tran-
siting Exoplanet Survey Satellite (TESS, G. Ricker et al.
2014) have allowed for the precise measurement of stel-
lar rotation periods. To-date, tens of thousands of stars
have measured Prot values from space-based photomet-
ric monitoring missions including CoRoT, Kepler, K2,
& TESS (S. Meibom et al. 2011; J. do Nascimento et al.
2012; L. Affer et al. 2012, 2013; A. McQuillan et al. 2013,
2014; A. Santos et al. 2019; B. Canto Martins et al. 2020;
A. Santos et al. 2021; T. Reinhold & S. Hekker 2020;
E. Avallone et al. 2022; R. Holcomb et al. 2022; Z. Clay-
tor et al. 2024b). However, these catalogs suffer from a
limited time baseline determined by the individual tele-
scope monitoring patterns (Z. Claytor et al. 2024b) and
lifetime (A. Santos et al. 2019). Future missions — such
as the Nancy Grace Roman Space Telescope (D. Spergel
et al. 2015) — will help expand this existing sample of
stars.
Ground-based surveys have been able to measure stel-

lar Prot specifically in stellar clusters (S. Meibom et al.
2011; D. Fritzewski et al. 2021; E. Cole-Kodikara et al.
2023). However, generalizable studies across the field
are challenging due to a combination of difficulties in col-
lecting observations at high enough cadence and over a
sufficiently long baseline to measure the range of possible
Prot. Despite these challenges, surveys such as MEarth
(P. Nutzman & D. Charbonneau 2008), the Zwicky
Transient Facility (E. Bellm et al. 2019, ZTF), and the
All-Sky Automated Survey for Supernovae (B. Shappee
et al. 2014; C. Kochanek et al. 2017, ASAS-SN) have for-
tuitously satisfied both requirements and have measured
Prot for ∼ 100, 000 stars (J. Irwin et al. 2011; E. New-
ton et al. 2016; T. Jayasinghe et al. 2019; M. Pawlak
et al. 2019; T. Jayasinghe et al. 2020; Y. Lu et al. 2022;
A. Phillips et al. 2023).
ASAS-SN (B. Shappee et al. 2014; C. Kochanek et al.

2017), is a ground-based all-sky monitoring survey de-
signed to observe the sky nightly for transient events.
ASAS-SN began collecting V-band observations of ob-
jects with Vmag < 17 in 2014, and in 2018 all the units
were switched to g-band filters that could observe ob-
jects with gmag < 18 (C. Christy et al. 2023). The full
ASAS-SN dataset has more than 100 million sources,
and the collection includes a substantial number of stel-
lar light curves, some of which possess likely rotation sig-
nals that have previously been characterized (T. Jayas-
inghe et al. 2019; M. Pawlak et al. 2019; T. Jayasinghe
et al. 2020).
Traditional measurements of Prot have employed

Lomb-Scargle periodograms (N. Lomb 1976; J. Scargle
1982), autocorrelation functions (A. McQuillan et al.
2013, 2014), wavelet transformations (S. Mathur et al.
2010; R. Garćıa et al. 2014), and Gaussian processes
(R. Angus et al. 2018; T. Gordon et al. 2021). However,
these methods are computationally intensive and infea-

sible to scale to the dataset size of ASAS-SN. Machine
learning (ML) is a powerful tool that can be utilized to
analyze large data. Deep learning networks have already
been demonstrated their utility across a broad range of
astrophysical topics such as elemental abundance deter-
mination (H. Leung & J. Bovy 2019), flare statistics
(A. Feinstein et al. 2020), galaxy redshift predictions
(Q. Lin et al. 2024), and cosmological parameter esti-
mation (J. Lee et al. 2024) to name a few. While ML
models may systematically underestimate extreme val-
ues (Y. Ting 2024), these techniques are still a powerful
tool that can be used to infer conclusions from large,
complicated datasets.
We present a new convolutional neural network (CNN)

framework that is capable of measuring stellar variabil-
ity periods from ASAS-SN light curves, including a sig-
nificant number of periods that we attribute to rota-
tion. The paper is structured as follows. In Section 2,
we describe the ASAS-SN data we use. In Section 3,
we discuss our simulated training set and CNN archi-
tecture. In Section 4, we present different tests of our
CNN to demonstrate the robustness of our method. In
Section 5, we validate our inferred Prot by comparing
to archival catalogs. In Section 6, we present trends in
inferred Prot as a function of different stellar popula-
tions. We conclude in Section 7. We provide all of the
scripts used to complete this work hosted on GitHub
at https://github.com/m-schochet/asas-sn-cnn. We in-
clude a GitHub icon (�) next to figures in this work that
link to Jupyter notebook files used to generate that fig-
ure.

2. ASAS-SN DATA

The ASAS-SN survey has a 10-year baseline of photo-
metric observations for millions of stars (Figure 1). Each
ASAS-SN unit has four 14-cm telescopes on a common
mount; there are five ASAS-SN units, located in Hawai‘i,
Texas, South Africa, and two units in Chile. This config-
uration allows ASAS-SN to observe the entire visible sky
every night. We used Globus (I. Foster 2011; B. Allen
et al. 2012) to transfer the ASAS-SN catalog from the
University of Hawaii to the University of Florida super-
computing servers (a.k.a. HiPerGator).
ASAS-SN data is separated into catalogs based on

NASA’s High Energy Astrophysics Science Archive Re-
search Center (HEASARC), with the addition of the
ASAS-SN stellar main catalog to denote all observed
stars. We down-select the stars we analyze using the
following criteria:

1. All stars were observed in the same filter. This
limits our light curve to observations that were
taken after all ASAS-SN units were equipped with
g-band filters (MJD: 58423).

2. All stars have identical time baseline. We choose
to analyze stars with observations from UT 2019

https://github.com/m-schochet/asas-sn-cnn
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Jan 01 (MJD: 58484.5) to UT 2024 Jan 01 (MJD:
60311.5).

3. The light curves do not have any bad quality ob-
servations. We used two metrics to distinguish bad
from good photometric points. First, we flagged
any data points where the measured magnitude er-
ror, σmag ≥ 99, as assigned by the ASAS-SN data
reduction pipeline. Second, the ASAS-SN data re-
duction pipeline labels photometric points as “G”
if the observation was “good.” We use this flag to
remove bad points as well.

4. The light curve possesses ≥ 150 photometric ob-
servations over the baseline defined in Criteria 2.

We found that ∼ 97% of the full ASAS-SN stel-
lar main catalog passed our four criteria, resulting in
a total of 96,304,837 light curves.

3. THE CONVOLUTIONAL NEURAL NETWORK

Here we present how we generate our simulated light
curves, the transformation applied to our light curves for
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Figure 1. A Hertzsprung-Russell diagram of stars observed

by ASAS-SN & and colored using Gaia (Gaia Collaboration

et al. 2016, 2018; D. Evans et al. 2018). The bins are only

filled if they contain 1000 or more stars. Neither our abso-

lute magnitudes nor our photometric colors are extinction

corrected. �

CNN input, and the architecture of our neural network.
From our simulated light curves, we divide the set into
our training (“how to set weights”), validation (“how is
the model doing, when do we stop training”) and test
(“how good is the trained network”) sets. The ratio
between these sets is 80:10:10 unless noted otherwise.

3.1. Data Preparation

The efficiency of a CNN is highly dependent on the
training data it is provided, with a potentially greater
impact on network performance than even the fine-
tuning of hyperparameters (J. Tayar et al. 2023). Due
to the observing strategy, cadence, and data quality of
ASAS-SN, the data is known to contain systematic noise
and strong aliases at 1, 2, and 30 days (T. Jayasinghe
et al. 2020). As a result, we need to ensure our train-
ing data will incorporate these real ASAS-SN “noise”
signals as well as a known Prot. To achieve this, we gen-
erate a set of synthetic light curves with known Prot and
inject them into ASAS-SN light curves that are meant
to capture ASAS-SN systematics. These injected light
curves constitute our training, test, and validation sets.

3.1.1. Simulated Rotation Periods

We created a simulated training set following the pro-
cedure of Z. Claytor et al. (2022) (hereafter C22). This
provides a good test as to whether simulated training
samples—that were previously used to infer Prot from
space-based photometry—can also find use with ground-
based observations. C22 generated a library of simu-
lated light curves with spot-modulated rotation periods
and then “injected” the simulated periodicity into a qui-
escent sample of sources that possesses the systematic
noise of the survey the neural network will predict on.
We simulate light curves with butterpy v1.0.0

(Z. Claytor et al. 2024a), which generates and evolves
light curves with physically-motivated models of stellar
spot emergence based on the simplified flux emergence
model of S. Aigrain et al. (2015). We simulated 1 mil-
lion light curves with input parameters sampled from
the distributions in Table 1.

3.1.2. ASAS-SN Training Templates

Here we describe our best “quiescent” sample of light
curves to inject our butterpy models into. C22 injected
their butterpy simulations into a set of galaxies within
the TESS Southern Continuous Viewing Zone to model
known TESS systematics, which enabled their predic-
tion of Prot in TESS observations. We tried a similar
approach using the ASAS-SN Million Quasar Catalog
(E. Flesch 2023, hereafter milliquas). We used the Sky-
Patrol Python client pyasassn (K. Hart et al. 2023) to
download all light curves from the milliquas catalog
hosted on the SkyPatrol website.1 We then applied the

1 http://asas-sn.ifa.hawaii.edu/skypatrol/

https://github.com/m-schochet/asas-sn-cnn/blob/main/plots/hr_diagrams.ipynb
http://asas-sn.ifa.hawaii.edu/skypatrol/
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Table 1. Distribution of Simulation Input Parameters

Parameter Range Distribution Symbol

Equatorial rotation pe-
riod

1 – 30
days

Uniform Peq

Activity level 0.1 – 10
× solar

Log-
uniform

A

Activity cycle period 1 – 40
years

Log-
uniform

T cycle

Activity cycle overlap 0.1 year
– T cycle

Log-
uniform

Toverlap

latitudespot, min 0◦ – 40◦ Uniform λmin

latitudespot, max λmin+5◦

– 85◦
Uniform λmax

Spot lifetime 1 – 10 Log-
uniform

τspot

Inclination 0◦ – 90◦ Uniform
in sin2 i

i

Magnetic field scaling
factor

0.005 Fixed αmed

Latitudinal rotation
shear

0.1 – 1
(50%)

Log-
uniform

∆Ω/Ωeq

0 (25%) Fixed

-1 – -0.1
(25%)

Log-
uniform

Note—We adopt nearly the same the distributions used by
Z. Claytor et al. (2022), and use similar values to those intro-
duced in their work. The periods sampled are in a smaller range
than expected in nature, however, this range of periods were
chosen to provide the best chance of inferring Prot given the ir-
regular cadence and baseline of examination for the ASAS-SN
stars.

same quality cuts detailed in Section 2 to each source,
resulting in a final template sample of 203,991 milliquas
sources. However, we found that this network architec-
ture was incapable of detecting Prot in ASAS-SN stel-
lar data that was not provided to the network during
training, indicating that milliquas templates were not
an ideal example of ASAS-SN systematics.
Recently, Z. Claytor & J. Tayar (2025) (hereafter C25)

extended their work (C22 & Z. Claytor et al. 2024b) to
the Kepler Bonus dataset (J. Mart́ınez-Palomera et al.
2023). However, due to a lack of quasars and galaxies
in Kepler field-of-view, the authors used red clump star
light curves as their templates. These stars typically
Prot slowly rotating (J. Tayar & M. Pinsonneault 2018;
C. Daher et al. 2022; R. Patton et al. 2024) and have
non-detectable rotation signatures (see, e.g. T. Ceillier
et al. 2017). To identify red clump stars, C25 computed
the absolute Gaia magnitude for all Kepler stars (MG),
where:

MG = G− 5 log10(d) + 5 . (1)

In Equation 1, G is the Gaia G-band magnitude
(phot g mean mag) and d is the distance to the object

calculated as

d [pc] = | 1000
p

| . (2)

In Equation 2, p is the parallax given in milliarcseconds.
Using these absolute Gaia magnitudes. Red clump stars
were identified as stars with −0.5 < MG < 1.5.
We developed a secondary training set using red clump

stars as our ASAS-SN templates. We found there are of
order 10,000,000 sources in the stellar main catalog
with −0.5 < MG < 1.5, which is a sufficient number of
templates to curate a training set of an appropriate size
for our dataset. Ultimately, we used 1,000,000 red clump
stars as the ASAS-SN templates into which we injected
butterpy periodic signals, mostly due to computational
limitations. Where there are large uncertainties in the
parallax, this estimate ofMG may be offset from the true
absolute magnitude. In particular, we note that that we
have not applied the zero-point correction from X. Luri
et al. 2018 and have not accounted for the Bayesian un-
certainty that is necessarily included in any Gaia astro-
metric measurements. However, even in cases of large
astrometric uncertainty (of order 0.5 mas and −0.029
mas for the zero-point offset), we would expect a differ-
ence in measured versus absolute magnitude of order ∼3
for the most significantly affected sources. Considering
that we are targeting red clump giants that are bright
and nearby (C. Soubiran et al. 2003), we do not ex-
pect significant issues with the astrometric uncertainty.
These errors should not affect our selection of appropri-
ate templates, as any stellar light curve will necessarily
incorporate the systematic noise from ASAS-SN that we
are interested in teaching our CNN to ignore. Thus, we
use a combination of milliquas and red clump star tem-
plates when generating our training, test, and validation
sets, and we explore the specifics further in Section 4.2.
We note that when originally curating the red clump

sample, there were 1105 repeat templates. This propa-
gated to 2210 objects in our training set having a non-
unique red clump template. However, the repetition of
training templates does not significantly influence the
predictive efficiency of our CNN (Section 4.4). Even so,
we note that three stars that we report Prot for were con-
tained in our training set and repeated once. Those tar-
gets are: TIC 388043164 (Prot,pred= 18.805±2.45 days),
TIC 397920546 (Prot,pred= 24.962±6.23 days), and TIC
461382691 (Prot,pred= 25.364±4.11 days). Overall the
slight repetition of a few templates does not impact the
results of the CNN.

3.2. Injection

We combine our synthetic butterpy light curves and
our templates using the following algorithm. First, we
linearly interpolate the butterpy light curve to the time
steps of the ASAS-SN template light curve. Next, we
piecewise multiply each ASAS-SN flux value to the in-
terpolated butterpy flux at those time steps. Finally,
we normalize the resulting light curve by the median
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Table 2. Convolutional Neural Network Architecture

Layer Type Number of Filtersa Filter Size Stride Activation Dropout Output Size

Input image - - - - - 64× 64

Conv2D 8 3× 3 1× 1 ReLU - 62× 62× 8

MaxPool2D 1 1× 3 1× 3 - 10% 62× 20× 8

Conv2D 16 3× 3 1× 1 ReLU - 60× 18× 16

MaxPool2D 1 1× 3 1× 3 - 10% 60× 6× 16

Conv2D 32 3× 3 1× 1 ReLU - 58× 4× 32

MaxPool2D 1 1× 4 1× 4 - 10% 58× 1× 32

Flatten - - - - - 1856

Dense - - - ReLU 10% 256

Dense - - - ReLU 10% 64

Output (Dense) - - - Softplus - 2

Note—We model the structure of C22 and use three 2D convolutional layers with ReLU activation, max-pooling, and 10% dropout. The
output goes through a series of fully connected layers—also using ReLU activation and 10% dropout—and with softplus output. We also
use the Adam optimizer (D. Kingma & J. Ba 2014) with negative log-Laplacian loss to predict rotation periods with uncertainties.

aWe explore how varying the number of convolutional filters affects predictive efficiency by testing four different filter architectures when
training our network (see Section 4.1). This column displays the number of filters for the network whose inferred periods are reported in
this work.

value of butterpy fluxes. We describe the full algo-
rithm in Appendix A. We chose the median value as it
is more robust against outliers. We applied this algo-
rithm across our entire template sample (milliquas and
red clump stars). This gave us our “injected” flux train-
ing set. This final set contains periodicity from the sim-
ulated butterpy signal and systematics from ASAS-SN.
We show an example of this in Figure 2.

3.3. Signal Transformation

Following the injection of the butterpy simulated sig-
nals, we apply a signal transformation to each light
curve to convert them into two-dimensional images that
display frequency information across the temporal do-
main. CNNs learn features from their respective train-
ing datasets, with effective predictions in the astrophysi-
cal regime demonstrated by networks working with one-
dimensional data (M. Hon et al. 2017; W. Liu et al.
2019), or more commonly on two-dimensional “images”
(W. Zhu et al. 2014; B. Hoyle 2016; A. Aniyan &
K. Thorat 2017; E. Kim & R. Brunner 2017; J. Wilde
et al. 2022). While studies have shown that periodicity
can be learned from one-dimensional stellar light curves
(S. Iglesias Álvarez et al. 2023), these results have relied
on the regular cadence of missions like Kepler. As a re-
sult, it is uncertain whether the irregular cadence and
noisy ground-based systematics of ASAS-SN are ideal
for this type of architecture.
Following the procedure of C22 for handling gaps and

systematics in TESS, we apply a signal transformation
to convert our light curves from time series into two-
dimensional images that display frequency information
as a function of time. This is done through the ap-
plication of a Lomb-Scargle periodogram (Press & Ry-

bicki algorithm, W. Press & G. Rybicki 1989) across sec-
tions of the light curve and across a range of frequencies
which outputs a two-dimensional image that approxi-
mates a modified wavelet power spectrum (C. Torrence
& G. Compo 1998).
To perform this transformation, we use the pyasassn

LS wavelet function2. This function takes time series
data and associated uncertainties, and runs through two
nested for-loops, first in frequency and then in time
space. In each frequency loop, a “time step” (∆t) is
created that is proportional to the frequency being eval-
uated to maintain the “wavelet” structure at all frequen-
cies. Then inside the time loop, the function generates
a Gaussian-modulated sinusoid window which is shifted
in time (to overlap on the section of the light curve be-
ing evaluated) and divided by the ∆t created earlier to
maintain the wavelet structure. The window is then
divided out of the uncertainties—which in principle re-
sults in the uncertainties nearest to the time step being
evaluated to be up-weighted—after which all non-integer
uncertainties are masked. The algorithm then performs
a Lomb-Scargle periodogram (N. Lomb 1976; J. Scargle
1982) across the entire light curve, excluding masked
points. The light curve’s power at the frequency being
evaluated is then measured and scaled to the integral of
our window function integrated over the ∆t that we cre-
ated (power

2π∆t ). This formulation leads us to refer to this
algorithm as the “chunky LSP,” although the output of
this function is a two-dimensional array that is analo-
gous to a wavelet transformation (see Appendix B for

2 The pyasassn Python client can be accessed at
https://github.com/asas-sn/skypatrol

https://github.com/asas-sn/skypatrol
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Figure 2. The light curve of ASASSN-V J050623.37-712251.8. Gaps in the data are intrinsic to ASAS-SN light curves. (First

row): Original light curve. (Second row): An example butterpy simulation over the same baseline. The complex sinusoidal

pattern demonstrates the intricate physics that butterpy simulations can generate. (Third row): A butterpy model injected

into a noise template. (Fourth row): The “injected” light curve minus the original noise template to demonstrate that we can
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ASASSN-V J050623.37-712251.8, a known spotted rotational
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empty regions of the transform using a cubic interpolation.

The vertical striping is indicative of noise. Our neural net-

work recovers a period of 27.3±2.23 days, which is consistent

with the 26.82 day period from T. Jayasinghe et al. (2018).

�

a programmatic representation of this algorithm). We
generate a time grid of length 128 with evenly spaced
intervals over our baseline of analysis (MJD 58484.5-
60311.5) along with a frequency grid of length 128 using
evenly spaced periods ranging from 1 to 30 days. Any
star with a period under 30 days will have undergone
more than 60 rotations over our baseline.
Some light curves have intervals of time with fewer

than one measurement per day. When performing the
chunky LSP on these sections of the light curve, the
returned power at low frequencies can be a number of
erroneous values including ±∞ or NaN. This is a prob-
lem for feeding the transformations into the neural net-
work because we require a common scale of values to
ensure uniformity in the data the CNN sees. The sim-
plest common scale for 2D images is to normalize each
pixel to an 8-bit integer in the range [0, 255], but this
is impossible if a value of ±∞ or NaN appear in the
transformation. To circumvent this, after performing
the chunky LSP we perform 2D cubic interpolation with
scipy.interpolate.griddata to fill in these values.
An example of what this transformation looks like is
shown in Figure 3. Additionally, the 2D grid interpola-

https://github.com/m-schochet/asas-sn-cnn/blob/main/plots/stacked_lightcurve.ipynb
https://github.com/m-schochet/asas-sn-cnn/blob/main/plots/transform_plotter.ipynb
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Figure 4. The network’s loss output for both training and
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over a number of epochs (set by the early stopping patience
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for both a well-fit network (top, row 5 in Table 3) as well

as a network that over-fit the training data (bottom, row

8 in Table 3). Over-fitting can be identified if the training

loss continues to decrease while the validation loss had many

epochs previously began to asymptote. �

tion in SciPy falls back to filling grid points with a NaN
value if there are no real values within the cubic region
with which to interpolate. In the cases where this does
occur, we additionally mask over these NaN values and
replace them with 0, however we explore the impact of
this choice further in Section 4.5.

3.4. CNN Architecture

Our CNN uses a similar architecture to that presented
in C22, and used in Z. Claytor et al. 2024b (hereafter
C24) to predict periods from noisy space-based data.
We build our network using the PyTorch python pack-
age (torch, A. Paszke et al. 2019) using the network
architecture in Table 2. Our network uses a series of
convolutional layers with rectified linear unit (ReLU)
activation followed by a time-dimension max-pooling.
ReLU is a nonlinear activation function with the form

f(x) = max(0, x), (3)

which allows for quick learning, as it outputs the input
if positive or 0 if negative.
We chose kernels in the convolutional and pooling lay-

ers to ensure equivariance in the frequency domain and
translational invariance in the time domain. This means

that we prevent pooling in the frequency dimension—
as that is what we are predicting—and we ensure that
the periodicity in the transformation can be identified
regardless of where in the time dimension of the trans-
formation it is found (for more details see Chapter 9
in I. Goodfellow et al. 2016). The output of the final
convolutional layer is then flattened and passed through
three fully connected layers, also with ReLU activation.
We use dropout of 10% in the max-pooling and fully
connected layers, which randomly assigns a percentage
of neurons to 0 in training thus removing their contri-
butions from the network. This ensures that learning
is focused on more generalized features. The final fully
connected layer used Softplus activation which has the
form

f(x) = ln(1 + ex). (4)

Softplus is a smooth approximation of the ReLU func-
tion which ensures that this final layer preserves differ-
entiability as well as requiring a positive output.
We use the Adam optimizer (D. Kingma & J. Ba 2014)

which allowed our network to vary the learning rate dur-
ing training, and used a negative log-Laplacian likeli-
hood for our loss function. This loss function allows for
the output of both a prediction (Ppred) and an error (σ)

L = ln(2σ) +
|Ptrue − Ppred|

σ
. (5)

We caution against interpreting σ as a statistically rigor-
ous estimate of the error on our predictions, but rather
as a rough estimate of the accuracy. While in principle
σ can be used to select a subsample of predictions that
can be considered “reliable” (such as in C25), we even-
tually decided to use the metric of fractional uncertainty
for this work to report our “good” sample. Fractional
uncertainty in our predictions is calculated as

Fractional Uncertainty =
σ

Ppred
, (6)

and we discuss in more depth the decision to select our
reported sample of periods using this metric over a σ
cut in Section 5.1.

3.5. CNN Training

Our full partitioned dataset was imported as a single
object, and during training we fed the transformations
into the network in batches. We used batch sizes of
100, 500 possible total training epochs, 20 epochs for
“early stopping patience,” and a learning rate of 10−5.
Varying the batch size only changes the relative speed
of the CNN training. Our learning rate was derived
from C22. We explore the value of our “early stopping
patience” further in Section 4.1.
The training set was 80% of the full dataset, and it

was used to determine the model’s weights. The vali-
dation set, which consisted of 10% of the dataset, was

https://github.com/m-schochet/asas-sn-cnn/blob/main/plots/loss_plots.ipynb
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Figure 5. The top panel compares the predicted and true

periods for the entire test set. The dotted black line is a 1:1

trend of Ppred:Ptrue, while the red dotted lines correspond to

10% differences (as in Eq. 7). The bottom panel is identical

to the top panel, but only includes predictions with frac-

tional uncertainties (Eq. 6) ≤ 25%. This shows that both a)

the predicted fractional uncertainty is a good indicator of a

successfully predicted period, and b) the inferred periods are

highly accurate when the fractional uncertainty is less than

25%. Note that the color bar scaling between the panels is

different. �

used to determine the early stopping of training. In
practice this meant that we ceased training the network
when the average loss on the validation set does not im-
prove over a window of training epochs determined by
the “early stopping patience” hyperparameter. At this
point, the model is considered trained, and it is tested
on the testing set made up of the remaining 10% of the
data. A demonstration of the network effectively min-
imizing loss over the course of training is shown in the
top of Figure 4.

While training, the network reports the period pre-
dicted for each object. We can compare that to the
assigned period from the butterpy simulations to de-
termine their reliability, defined as

|Ppred − Ptrue|
Ptrue

(7)

Figure 5 shows the results for both the full sample (top),
and for those with fractional uncertainties ≤ 25%. Our
network only reliably recovers periods for a small frac-
tion of light curves from the whole test set (only 26%
have reliability < 10%). For periods with fractional un-
certainty less than 25%, 71% of periods are reliable to
within 10%, and 88% are reliable to within 20%.

4. VARYING THE CNN INPUTS

The outputs of any machine learning algorithm are
highly sensitive to the data it was trained on. Beyond
this, we wanted to test whether an identical architecture
used on space-based photometry (C22; C25) can be used
on noisier ground-based photometry. To further validate
the results of our presented architecture, we perform
several tests to examine how varying our simulated light
curves and hyperparameters affect the recovery rate of
Prot.
Through various modifications of either our training

set or network architecture, we aim to address the fol-
lowing questions:

• How does the number of convolutional filters affect
our network’s output periods? (Sec. 4.1; Rows 1-4
in Table 3; Figure 6a-d)

• Are stars or quasars/galaxies the best noise tem-
plate for injection to teach our network to infer
rotation periods? (Sec. 4.2; Rows 1-8 in Table 3;
Figure 6a-h)

• How many training templates is the ideal number
for teaching our network? (Sec. 4.3; Rows 1 & 9
in Table 3; Figure 6a, i)

• Does repeating noise templates in the training set
substantially worsen our predictions? (Sec. 4.4;
Rows 9-10 in Table 3; Figure 6i, j)

• Does masking over areas of our transformation
with minimum non-NaN values improve our pre-
dictions over masking with NaNs? (Sec. 4.5; Rows
1 & 11 in Table 3; Figure 6a, k)

• Does scaling the signal of our transformation im-
prove our predictions? (Sec. 4.6; Rows 1 & 12 in
Table 3; Figure 6a, l)

To address all of these questions, we use the milliquas
light curve templates with injected butterpy Prot. This
minor difference in training sets does not affect the qual-
itative conclusion from each test performed. All other

https://github.com/m-schochet/asas-sn-cnn/blob/main/plots/networksuccess.ipynb
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properties of the CNN remained the same as described
in Section 3.5, unless otherwise noted. We note that
we use the fractional uncertainty (Equation 6) as our
metric for evaluating the results of each test. We report
the percentage of Prot in the test set that the network
reported as accurate to within a fractional uncertainty
of 25%. We provide an overview of our changes for each
test in Table 3, and a visual summary of the results from
each test in Figure 6.
We recognize that there are different architecture and

training set configurations that can be applied to ad-
dress all of the aforementioned questions. Our aim is
not to provide a comprehensive overview of these dif-
ferent configurations, but rather validate the decisions
made in our CNN presented in Section 3.

4.1. Convolutional Filter Sizes

We want to identify the ideal number of convolutional
filters to use when predicting Prot. C22 did not iden-
tify any major differences between predictions made by
CNNs where the number of convolutional filters in the
first Conv2D layer varied from 8 to 64. We assess whether
or not this is true with ground-based photometry as well.
We trained four unique CNNs with varying filter sizes of
8 (16, 32, 64), 16 (32, 64, 128), and 32 (64, 128, 256) in
the first, second, and last convolutional layers, respec-
tively.
We trained and predicted on the same examples for all

four networks. The results are presented in Figure 6a,
b, c, and d. While the overall predictive efficiency be-
tween these models differs by ∼ 1%, we find that our
networks trained on the largest number of convolutional
filters were being overfit (bottom of Figure 4) compared
to our smaller networks (top of Figure 4), despite using
identical hyperparameters. This means that our larger
networks continue adjusting weights long after the out-
put predictions stopped “improving.” This could be be-
cause the greater number of filters encourages the CNN
to identify more complicated trends that our data does
not possess. As a result, this test validates our initial
choice of convolutional filter sizes from Table 2. While
each architecture produces a high-fidelity catalog, we
choose to report the catalog from the CNN with the
fewest convolutional filters.

4.2. Choice of Quiescent Source

We explore the quiescent templates used in our train-
ing set. For all of the tests presented in Section 4, we use
the milliquas data as our noise templates. However, in
our best-trained CNN our noise templates were instead
red clump stars (Sec. 3.1.2). Here, we aim to assess
which “quiescent” source provides a better template for
capturing ASAS-SN noise properties and systematics.
We use the same red clump selection protocol de-

fined in Section 3.1.2 (C25). We randomly chose 106

sources, without repetition, from our clump sample to
train a new CNN and compare to the milliquas-only

CNN, which has repetitive templates. We also repeat
this exercise for different numbers of convolutional lay-
ers. We had each CNN predict on their test sets. The
results of this test are shown in Figure 6a-h.
Our results demonstrate that the CNN’s ability to in-

fer reliable Prot in its testing set improved more by than
500% by changing the training set from milliquas to red
clump stars. For the purpose of predicting rotation pe-
riods from ASAS-SN stars, this test validates our de-
cision to use clump templates as opposed to milliquas.
There are several possible hypotheses for why this may
be, including the fact that quasars are typically faint
and intrinsically variable sources. In addition, when the
ASAS-SN pipeline performs aperture photometry on a
source, a two pixel annulus (∼16”, see K. Hart et al.
2023) is used. For stellar sources, this should not dra-
matically affect our measurements from night to night
since they are point sources; however, milliquas sources
are basically all extended. Again, the results of this work
differs from that presented in C22, where training on
extended source templates was sufficient, although this
may be due to the larger pixel scale present on TESS
(∼21” as opposed to ∼8” in ASAS-SN). Our general
conclusion is that CNNs should be trained on template
data that is as close to the data to be predicted on.

4.2.1. Alternative Templates

In developing our CNN, we relied on using a combina-
tion of milliquas and red clump star light curves for our
training, test, and validation sets. While this worked
for our network, we note that there are other templates
one could use. To start, we considered using stars in the
ASAS-SN with previously measured Prot (T. Jayasinghe
et al. 2019; M. Pawlak et al. 2019; T. Jayasinghe et al.
2020). However, these Prot were recovered using a dif-
ferent technique (a random forest classifier followed by
a Lomb-Scargle periodogram, see T. Jayasinghe et al.
2018, 2019). As a result, should we train our CNN on
these catalogs, it is possible the CNN would imprecisely
learn if the Lomb-Scargle periods were inconsistent from
the canonical Prot. Alternatively, we considered using
ASAS-SN stars with measured Prot from other missions
that could be cross-matched (e.g. MEarth, ZTF, or
TESS). However, an incomplete set of training, test, and
validation data could cause our CNN to preferentially
detect a subset of Prot. This would artificially limit our
ability to detect new Prot. Furthermore, some of the
Prot that we would utilize for this method were also
derived from machine learning techniques (Z. Claytor
et al. 2024b), which may be incomplete or include spu-
rious Prot. Determining the ideal template set for our
CNN architecture should be investigated, but is beyond
the scope of this work.

4.3. Training Set Size

We explore how many training templates are required
to sufficiently distinguish between true Prot and noise.
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Table 3. Convolutional Neural Network Tests

Figure 6
Sub-label

Section Training Set
Size

Template
Catalog

Repeated
Templates

Scaling Masking
Method

Number of
Convolutional
Filters

Predictive
Efficiency

(a) 4.1, 4.2,
4.3, 4.5, &
4.6,

106 milliquas Yes Normal Nanmask 8/16/32 3.81%

(b) 4.1 106 milliquas Yes Normal Nanmask 16/32/64 4.35%

(c) 4.1 106 milliquas Yes Normal Nanmask 32/64/128 4.63%

(d) 4.1 106 milliquas Yes Normal Nanmask 64/128/256 4.56%

(e) 4.2 106 clump No (∼ 99%∗) Normal Nanmask 8/16/32 19.82%

(f) 4.2 106 clump No (∼ 99%∗) Normal Nanmask 16/32/64 21.54%

(g) 4.2 106 clump No (∼ 99%∗) Normal Nanmask 32/64/128 21.43%

(h) 4.2 106 clump No (∼ 99%∗) Normal Nanmask 64/128/256 21.79%

(i) 4.3 & 4.4 203,991 milliquas Yes Normal Nanmask 8/16/32 0.18%

(j) 4.4 203,991 milliquas No Normal Nanmask 8/16/32 0.97%

(k) 4.5 106 milliquas Yes Normal Minmask 8/16/32 0.19%

(l) 4.6 106 milliquas Yes 10x Nanmask 8/16/32 2.83%

∗See Section 3.1.2 for more details

Note—This table demonstrates the different predictive efficiencies of the networks tested in Section 4. Our tests demonstrate that the
reductions of the training set from 106 to ∼105 reduced predictive efficiency several times over. Meanwhile, the majority of our tests
revealed only marginal improvements while demonstrating other prominent complications over the network whose parameters are shown
in the first row of this table. The first column refers to the location of the scatterplot demonstrating this network’s predictive efficiency
in the summary Figure 6

C22 used a training set of size 106 examples. However,
other astrophysical CNNs have demonstrated effective
training on sets∼105 examples (J. Bialopetravičius et al.
2019; C. Burke et al. 2019; N. Monsalves et al. 2024).
To explore how well our CNN performs when trained on
a smaller sample, we repeat our training using set sizes
of 105 and 106.
Our one million butterpy simulations were then

matched up to a milliquas template one-to-one, and seg-
mented into training, testing, and validation sets with
the typical 80:10:10 ratio. Additionally, we ensured that
repeated milliquas light curves only appeared in either
the training, test, or validation sets. We down selected
105 examples to create the smaller training set; this sub-
set had examples with repetitive milliquas templates.
For the smaller set, we divide the sets using a ratio of
∼82:8:10; this ensured there was enough training data
for the accurate setting of network weights.
After training networks on both sets, we predicted on

their associated test sets to determine their accuracy.
These results are presented in Figure 6a, i. We find that
the predictive efficiency increases from 0.18% to 3.81%
when increasing the training set from 105 to 106. This
test helped us determine that there is a clear improve-
ment on predictions from networks trained on 106 light
curves, despite template repetition used in generating
the training set. This validates our use of 106 exam-
ples in our training dataset for our CNN presented in
Section 3.

4.4. Repetition of Templates

Due to the limitations of our templates, we had to re-
peat examples to sufficiently test how sample size affects
the CNN predictive efficiency. However, the resulting
predictive efficiency could have improved either due to
the increased training set size or if it was able to learn
better with repeated templates. Here, we develop a test
to distinguish between these possibilities.
To explore the difference in predictive efficiency of a

set of 105 examples, we train on a set of 105 examples
with and without template repetition. We then pre-
dicted on their associated test sets, and the results are
presented in Figure 6i, j. We find that the predictive ef-
ficiency increases from 0.18% to 0.97% when training on
examples that do not repeat milliquas templates. This
improvement, albeit small, supports the use of unique
training templates when possible.

4.5. Masking Procedure

We examined the ideal procedure for the cubic inter-
polative masking (Section 3.3) and aim to assess how
our masking routine impacts the predictive efficiency of
our CNN. In our initial procedure, we masked over all
interpolated values of NaN or ±∞ to 0. However, this
change may wash out low signal areas of the transfor-
mation, resulting in an artificial handicap on the periods
we could detect. Here, we test a secondary procedure
in which we replaced values of NaN and ±∞ with the
minimum non-NaN value from the transformation. We
trained two CNNs, with the first using our initial reas-
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Figure 6. The predictive efficiencies of different neural network architectures and training sets. The subpanels correspond to

the rows in Table 3. Figures are labeled by ‘small”, “medium”, “large”, and “extra large” to denote the network “size” when

we vary the number of filters. We find there is a negligible difference in inferred Prot when we change the filter sizes. However,

we highlight the significant improvement (500% increase) in the predictive power of our network when training on red clump

star templates compared to the milliquas templates which are shown in the first row. The low recovery of periods in (i) &

(j) demonstrate that a network trained on 105 templates is ineffective at producing confident predictions when compared to a

network trained on 106 templates. The minor improvement in (j) is due to using non-repeated templates. Similarly, the low

recovery in (k) & (l) demonstrate that neither the “min-mask” method of SciPy interpolation or 10× scaling of signal improved

the quantity or quality of predictions compared to our base procedure. �

signment prescription and the second network using the
aforementioned “min-mask” method.
We predicted on their associated test sets. The re-

sults are presented in Figure 6a and k. We find that
the predictive efficiency decreases from 3.81% to 0.19%
when implementing the “min-mask” method. This test
demonstrates that our CNN is able to better distinguish
between Prot and noise when using our initial method-
ology of replacing NaN/±∞ values with 0 in the trans-
formation.

4.6. Scaling of Periodic Signal

We choose to explore whether the low predictive ca-
pabilities of our previously tested CNNs were due to a
lack of relevant signal to identify. We examine the ef-
fect of scaling of our transformations prior to training.
The idea of scaling would be to amplify the low-power
sections of the transformation, which may include true

Prot information. By scaling the background to remove
low-amplitude signals, we aim to artificially amplify the
signal from Prot.
Our initial transformations were normalized to 8-bit

integers between [0, 255]. To test how this normaliza-
tion process affects our training, we rescale the entire
transformation to 10× its regular power. Then, we set
every pixel with value > 255 to 255, and trained the
network on these new normalized transformations. The
affect of applying this scaling to the transformations is
shown in Figure 7.
Using a training set of 106 examples, we predicted on

the associated test set. These results are shown in Fig-
ure 6a and l. We find that our new normalization tech-
nique decreases the predictive efficiency from 3.81% to
2.83%. While there are numerous rescaling techniques
that could be explored, this simple test validates that

https://github.com/m-schochet/asas-sn-cnn/blob/main/plots/tests_figures.ipynb
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Figure 7. The same transformations of ASASSN-V

J050623.37-712251.8, the same target presented in Figure 3,

but using a different scaling value before being fed into the

neural network. While this does suggest that rotational mod-

ulation is amplified by this method, it is not as effective as

the base procedure as shown in Figure 6a versus 6l. We use

a scaling factor of 10×. �

our initial rescaling technique results in a better per-
forming CNN.

5. VALIDATION OF ROTATION PERIODS

We ran 85,904,442 of the transformed ASAS-SN light
curves through our determined “best” network (row 5
of Table 3). We note that the number of transforms we
predict on is ∼ 90% of our full ASAS-SN catalog. This is
due to data loss which occurred during our transforma-
tion routine performed on HiPerGator. We cross-match
these remaining targets by their IDs with ESA’s Gaia
Data Release 2 (DR2) catalog. We query the following
parameters: parallax, Bp, Rp, and G magnitudes (Gaia
Collaboration et al. 2018; D. Evans et al. 2018). Ad-
ditionally, for our catalog of reported periods we query
Gaia DR3 for stellar luminosity, radii, and spectroscopic
rotational broadening (M. Fouesneau et al. 2023). We
then used the Gaia XGBoost catalog (R. Andrae et al.
2023) to include initial inferred values of the effective
temperature (Teff), surface gravity (log(g)), and metal-
licity ([M/H]) of our sample. We note that ∼ 10% of
our sample lacked at least one of the aforementioned
parameters, which is propagated into our resulting cat-
alog. We do not speculate as to why these parameters
are missing for each individual target.

5.1. Predicted Periods and Uncertainties

Our neural network does not supply true errors that
can be used to determine accurate predictions. Instead,
we must calibrate the errors and define what is a robust
detection. As mentioned earlier in this work, we define
stars with fractional uncertainties of < 25% as robust.
Here, we quantitatively justify this cut-off by cross-
matching our targets with other works who have pre-
sented measured Prot. We first cross-matched our pre-
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Figure 8. Justification for our reported “gold” sample being

chosen via fractional uncertainty on inferred Prot. The top

panel is shown with respect to error, while the bottom is

in fractional uncertainty-space. A stricter cutoff results in

a smaller reported sample, but black cuts indicate period

catalogs of similar sizes. By choosing fractional uncertainty

as our metric of assessing quality predictions, we maintain a

more robust catalog of predictions at all values of Prot while

still ensuring our reported catalog is substantial. �

dictions to the Gaia DR2-Kepler Input Catalog (KIC)
1 arcsecond cross-match list from the Gaia-Kepler fun
website (found at https://gaia-kepler.fun). Then, we
used the provided KIC IDs to cross-match our sample
to the catalogs presented in A. Santos et al. (2019, 2021),
whose Prot were robustly measured based on photomet-
ric variability; we identified 41,825 cross-matched stars.
We then select targets whose predicted Prot from our
neural network was accurate to within 10% of the Prot

reported in A. Santos et al. (2019, 2021), and compare
our sample’s fractional uncertainty to the raw σ-values
output from our CNN in Figure 8.
Figure 8 demonstrates that increasing the constraint

on our error cut improves the reliability of our sam-
ple, but reduces the sample size. Furthermore, Figure 8

https://github.com/m-schochet/asas-sn-cnn/blob/main/plots/transform_plotter.ipynb
https://github.com/m-schochet/asas-sn-cnn/blob/main/plots/frac_errors.ipynb
https://gaia-kepler.fun
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demonstrates that using the fractional uncertainty pro-
vides a balance, where we are still left with many re-
liably predicted Prot without removing too many stars.
We note that using the fractional uncertainty is better
at removing spurious short Prot ≤ 7 days. This is likely
due to the fractional uncertainty being sensitive to the
errors and predictions in conjunction, while an error cut-
off is completely independent of our predicted periods.
Using a fractional uncertainty cutoff of 25% resulted in
a sample of 208,260 stars with reliably predicted Prot,
defined as our “gold” sample (data model shown in Ta-
ble 4). The remainder of the analyses presented in this
work only uses the Prot from this subset of stars.
We present the spatial distribution and color-

magnitude diagram of stars with reported Prot in Fig-
ure 9. We demonstrate that we have a high recovery of
Prot for giant stars, although it is unlikely these periods
are related to rotation (Sec. 6.2). We detect Prot for
FGKM stars and subgiants, and we do not detect Prot

for hotter stars, which is to be expected (E. Avallone
et al. 2022). We further discuss the limitations of our
presented Prot by comparing to external catalogs.

5.2. Comparison to Literature Periods

We validate our “gold” sample by cross-matching
our predicted Prot with other publicly available cata-
logs. We aim to validate Prot across a range of spec-
tral types and determine the limitations of our method-
ology. Fortunately, we had many catalogs to com-
pare to. We select to compare our “gold” sample Prot

to the following catalogs: (I) 55,232 stars with mea-
sured Prot from Kepler (A. Santos et al. 2019, 2021);
(II) 40,553 stars with measured Prot from ZTF (Y. Lu
et al. 2022); (III) 7,245/32,159 stars with measured
Prot from TESS/Kepler Bonus light curves, respectively
(C24/C25); (IV) 13,504 stars with measured Prot from
TESS (R. Holcomb et al. 2022); (V) 10,909 stars with
measured Prot from TESS (I. Colman et al. 2024); and
(VI) 53,169 stars with measured Prot from ASAS-SN
(VSX, C. Christy et al. 2023)3. We also note that some
stars have provided Prot from several of these catalogs;
we highlight this overlap in Appendix C.
Our resulting cross-match allows us to compare our

inferred Prot to 10s-1000s of measured Prot from more
traditional methods of detection. We compare the mea-
sured versus inferred Prot between the aforementioned
catalogs and this work in Figure 10. We find that our
Prot are in good agreement with those presented in Y. Lu
et al. (2022), A. Santos et al. (2019, 2021), and C24.
Meanwhile, we find slight differences in Prot between our
work and the remaining catalogs. In particular, we find
that our predicted Prot are biased towards longer periods
as compared to Prot measured from TESS (R. Holcomb

3 The ASAS-SN Catalog of Variable Stars can be downloaded
here: https://asas-sn.osu.edu/variables.

-150°-120° -90° -60° -30° 0° 30° 60° 90° 120° 150°

RA-75°
-60°

-45°
-30°

-15°
0°
15°

30°
45°

60°
75°

D
ec

0.000

0.002

0.004

0.006

0.008

0.010

D
et

ec
ti

on
 F

ra
ct

io
n

2 0 2 4 6 8
Gaia Bp - Rp

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

12.5

G
ai

a 
M

G

10 5

10 4

10 3

10 2

10 1

100

D
et

ec
ti

on
 F

ra
ct

io
n

Figure 9. The detection fraction of our “gold” sample with

inferred Prot spatially distributed across the sky (top) and

in color-magnitude space (bottom). We highlight our higher

detection fraction along the Galactic plane. In addition, we

find that we have a high recovery of periods for stars along

the giant branch. This reinforces that our network is most

sensitive to bright variable sources. �

et al. 2022; I. Colman et al. 2024). Furthermore, as
compared to C25, we find an increased scatter slightly
offset from a 1:1 agreement in Prot, whereas compared
to R. Holcomb et al. (2022); I. Colman et al. (2024),
our Prot are scattered around a 2:1 agreement. These
differences are likely due to a combination of our net-
work’s inability to predict very short Prot and known
issues with detecting longer Prot in TESS observations.

https://asas-sn.osu.edu/variables
https://github.com/m-schochet/asas-sn-cnn/blob/main/plots/det_frac_mollweide_hr.ipynb
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Figure 10. Validation of our inferred Prot as compared to several Prot catalogs in the literature. Points are colored by Gaia

Bp - Rp, except for the white circles with black borders which have periods at Prot = 25± 3 days (near the sidereal alias). We

present cross-matches between: (a) Y. Lu et al. (2022), (b) C25, (c) A. Santos et al. (2019, 2021), (d) R. Holcomb et al. (2022),

(e) C24, (f) I. Colman et al. (2024). We present the 1:1 line as the dashed red line and the 90% interval as the blue dotted

lines. We plot the 1:2 and 2:1 relationships as the red dotted lines. The shaded region denotes the 25% errors off of the 1:1

trend line between our populations. We find that the majority of our inferred Prot are in agreement with various catalogs, with

the exception of the short Prot < 3 days stars measured with TESS (R. Holcomb et al. 2022; I. Colman et al. 2024). �

In order to further identify the limitations of our pre-
sented method, we compare our predicted Prot from this
work against Prot presented in VSX in Figure 11. This
highlights how our neural network is performing on a
range of different variable types from spotted rotational
variables to Cepheids to eclipsing binaries.
We find that our presented Prot are in 1:1 agreement

with the majority of spotted rotational variables, semi-
regular variables, long irregular variables, Cepheid-type
variables, young stellar objects, and stars of unknown
variable-type. On the other hand, our network strug-
gles with RR Lyrae-type, Delta Scuti-type, and eclipsing
binary-type variables. We downloaded the TESS light
curve for a subset of stars in our catalog that were clas-
sified in the VSX and present these light curves phase-
folded in Figure 12. We find that we are able to predict
Prot reliably for non-rotational variability. However, we
are unable to accurately recover exact periods for eclips-

ing binaries. This is likely due to the limited baseline
observed across each eclipse in the ASAS-SN observa-
tions.

6. OBSERVED TRENDS ACROSS DIFFERENT
SUB-POPULATIONS

We explore observed trends across four different sub-
populations: hot stars, giants, cool dwarfs, and sub-
giants. We divide our sample into these sub-populations
based on empirical relationships derived from Gaia Bp−
Rp color and MG magnitude. In particular, we clas-
sify hot stars as those with temperatures greater than
the Kraft break (Teff ≥ 6500 K, R. Kraft 1967), which
roughly corresponds to Bp − Rp < 0.6 (A. Beyer &
R. White 2024). This is further verified by the color-
Teff relationships presented in M. Pecaut & E. Mamajek
2013 & E. Mamajek 2022. For the remaining three popu-

https://github.com/m-schochet/asas-sn-cnn/blob/main/plots/scatterplots.ipynb
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Figure 11. A comparison between our inferred Prot and those presented in C. Christy et al. 2023. We separate our sample by the

assigned variable type from VSX. We show the comparison for spotted rotational (black), semi-regular (brown), long irregular

(purple), Cepheid-type (teal), unknown variable type (dark green), young stellar objects (light green), Delta Scuti-type (maroon),

RR Lyrae-type (orange), and eclipsing binaries (blue). The shaded regions here again denote the 25% fractional uncertainty

range at different value of Prot. These plots demonstrate an extremely low recovery of the true Prot for short-term variables

like RR Lyrae-type and Delta Scuti-type stars. In addition, our network is able to recover Prot for spotted, semi-regular, and

irregular variables well. The clumping of stars at Prot ≤ 3 days are due to the limitations of our network. �

lations, we divide them based on the following relations.
Giants must satisfy the following criteria:

MG ≤ 2(Bp −Rp)− 4. (8)

Whereas cool dwarfs must satisfy the following crite-
ria:

MG ≥ 1.4(Bp −Rp) + 2.8. (9)

Any stars which were not categorized as hot stars,
cool main sequence dwarfs, or giants were categorized
as sub-giants (Figure 13).

6.1. Hot Stars

As hot stars possess negligible surface convection
zones, we expect these sources to be less spotted and
more rapidly rotating than cooler stars. To verify if our
measured Prot is physical, we use the spectroscopic ro-

https://github.com/m-schochet/asas-sn-cnn/blob/main/plots/scatterplots.ipynb
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Figure 12. TESS and ASAS-SN phase folded light curves

for a (a) Cepheid, (b) young stellar object, (c) spotted ro-

tational variable, and (d) eclipsing binary, as categorized by

the VSX. Our network is able to recover non-rotational vari-

ables (a, b). Our network is also able to recover spot-driven

rotational variability (c), though there are offsets from pre-

vious work. We additionally highlight the network’s ability

to recover the true period of eclipsing binaries (d). �
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https://github.com/m-schochet/asas-sn-cnn/blob/main/plots/phase_foldedlcs.ipynb
https://github.com/m-schochet/asas-sn-cnn/blob/main/plots/hrsubpops.ipynb
https://github.com/m-schochet/asas-sn-cnn/blob/main/plots/subpopulations.ipynb
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tational broadening, vbroad, derived from Gaia . With a
combination of vbroad and Prot, we are able to assess if
these stars have reasonable inclinations.
To ensure a robust sample, we discarded any stars

with Prot = 25± 3 days to ensure we removed any side-
real aliasing that may heavily bias this sample. Addi-
tionally, we discarded sources which did not have re-
ported Gaia vbroad. Finally, we removed stars with
vbroad measurements below the threshold of accurate
broadening detection (vbroad ≤ 10 km s−1; Y. Frémat
et al. 2023). This resulted in a final sample of 146 hot
stars.
We computed a

Pspec

sin(i) via:

Pspec

sin(i)
=

2πR [km]

vbroad [sin(i) km s−1]
(10)

Where R is the stellar radius provided by Gaia . We

present our inferred periods versus
Pspec

sin(i) in Figure 14.

We find that nearly all of our inferred periods are spuri-
ous for a sample of stars that are likely rapidly rotating
with minimal observable photospheric spots. This re-
sult suggests that the derived Prot for these hot stars
are likely nonphysical, although some of these may be
real periods from background stars or smaller compan-
ions. Further understanding of why the presented neural
network is detecting these Prot is saved for future work.

6.2. Oscillating Giants

We aim to determine whether we could identify the
oscillatory frequencies of maximum power, νmax, in lu-
minous asteroseismic giants, similarly to C25. To calcu-
late νmax, we adopt the following relationship (see e.g.
T. Brown et al. 1991; H. Kjeldsen & T. Bedding 1995;
W. Chaplin et al. 2011)

νmax

νmax,⊙
= fνmax

g

g⊙
(
Teff

Teff,⊙
)−0.5. (11)

Here, g is the surface gravity of the star and fνmax

is an empirically derived correction function to ensure
the relations scale appropriately for most stars across
the possible physical parameter space (for a deeper dis-
cussion, see Sec. 3.2 in M. Pinsonneault et al. 2025).
We adopt Teff,⊙ = 5772K, g⊙ = 104.438 (both A. Prša
et al. 2016), νmax,⊙ = 3076 µHz, and fνmax

= 1 (both
M. Pinsonneault et al. 2025). We derive Teff and g
from the catalog of R. Andrae et al. 2023, which pro-
vides machine-learning derived parameters (XGBoost al-
gorithm, T. Chen & C. Guestrin 2016) trained on SDSS
APOGEE DR17 (Abdurro’uf et al. 2022). Approxi-
mately ∼ 88% of our giant sample have available derived
Teff and log(g) from this catalog. We use these derived
parameters to then calculate νmax. We convert these
νmax into a period such that we could compare our in-
ferred Prot to the oscillatory period of maximum power
(Figure 15).
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Figure 15. A comparison between our inferred Prot and

the computed ν−1
max from Gaia XGBoost parameters. While

our predictions trace the expected trend, our catalog is sys-

tematically offset from the estimated ν−1
max by ∼65%. The

inset Hertzsprung–Russell diagrams demonstrate that stars

falling above the 1:1 line (73,301 total, 67.7%) are system-

atically bluer than stars that fall below the 1:1 line (35,060

total, 32.4%). �

We find that our inferred periods are closely correlated
to the derived νmax. We continue to find a significant
fraction of stars with inferred Prot = 25 ± 3 days, cor-
responding to the sidereal alias. We find that Prot <
ν−1
max, XGBoost are on average redder than the population

with inferred Prot > ν−1
max, XGBoost. 76.5% of our remain-

ing giant sample possess Prot > ν−1
max, XGBoost.

We aim to determine whether the offset between in-
ferred Prot and derived νmax is due to our neural network
or uncertainties from the XGBoost parameters. As such,
we cross-matched our giant sample to the APOKASC-
3 catalog (M. Pinsonneault et al. 2025), which has
well calibrated asteroseismic parameters for a sample
of stars contained in both SDSS APOGEE and Kepler
. We find 146 stars in our sample that overlap with the
APOKASC-3 catalog (Figure 16). We demonstrate that
our inferred Prot are not offset from the APOKASC-3
νmax, which leads us to conclude that our inferred Prot

for giants are generally consistent with νmax, and it is
likely the XGBoost parameters that are slightly offset
from the true values. However, we caution that addi-
tional validation is required should future work choose
to use our our neural network to derive νmax.

https://github.com/m-schochet/asas-sn-cnn/blob/main/plots/subpopulations.ipynb
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Figure 16. A comparison of ν−1
max computed from the

APOKASC-3 catalog to our inferred Prot. We demonstrate

the the majority of our matched Prot are in agreement with

the asteroseismic-derived ν−1
max values from APOKASC-3.

Thus, we demonstrate that our inferred Prot for giants are

likely astrophysical and are correlated with observed oscilla-

tory periods. �

6.3. Cool Dwarfs

We aim to verify that our catalog of inferred Prot for
cool stars displays the commonly identified “intermedi-
ate period gap” that has been seen across several differ-
ent studies (e.g. A. McQuillan et al. 2013; J. Davenport
2017; J. Davenport & K. Covey 2018; T. Reinhold et al.
2019; J. Curtis et al. 2020; F. Spada & A. Lanzafame
2020; T. Gordon et al. 2021; Y. Lu et al. 2022).
Before we proceeded to vet these periods, we wanted

to ensure that the reported periods are representative of
the periods found in nature. We plot the Gaia photo-
metric magnitude distribution of our dwarfs and oscil-
lating giants in Figure 17. This figure highlights the fact
that the majority of our inferred periods are from bright
sources; however, there are a substantial number of stars
out to much dimmer magnitudes. In the end, to demon-
strate the highest fidelity catalog of cool dwarf periods,
we decided to cut out any dwarfs dimmer than a Gaia
photometric magnitude of 15. This removed a signifi-
cant fraction of stars near the sidereal period (∼ 27 d),
and reduced our cool dwarf sample from 38,860 to 29,473
stars.
We use the “period gap” boundaries defined in T. Gor-

don et al. 2021: each line is defined as

Pupper = A(G−GRP −x0)+B(G−GRP −x0)
1/2 (12)
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Figure 17. A 2D histogram of the Gaia photometric mag-

nitudes for our oscillating giant and dwarf sub-samples com-

pared to the full ASAS-SN catalog. This highlights both

that the majority of our oscillating giant periods are from

the brightest stars, and that our inferred periods for dwarfs

trail off to much dimmer magnitudes. This suggests that our

inferred periods for the dimmest stars—especially for cool

dwarfs—may be spurious. �

Parameters A and B have units of days. For the up-
per edge A = 68.2277, B = -43.7301, & x0=-0.0653; for
the lower edge A = 34.0405, B = -2.6183, & x0=0.3510.
We cross-match the Prot presented in A. Santos et al.
2019, 2021 with Gaia to compare to our sample. We
plot our inferred periods alongside the Santos periods
in Figure 18. Overall, we find that our inferred cool
dwarf periods line up quite well with the periods from
the Santos catalogs, except for the clumping of stars at
Prot = 25±3 which we attribute to sidereal aliasing. We
note that although the cut to remove the dimmest stars
did reduce the number of periods found at this alias, the
alias is still difficult to entirely remove from our sample;
periods close to this value should be treated with cau-
tion. We also note that the period gap is more accu-
rately an under-density in period-color space, and that
both our predictions and those of the Santos catalogs do
contain a few predictions within the gap boundaries.

6.4. Subgiants

We compare our subgiant population to the catalog
of E. Leiner et al. 2022 (Figure 19) to determine if our
inferred Prot are physical. We find there are 574 stars
overlapping between both catalogs and that our network
infers an accurate Prot for the majority of stars matched,
all of which are anomalous sub-subgiants or RSCVns.
We are able to recover 467 (81.35%) of the E. Leiner
et al. 2022 catalog to within 10% of their period as
reported in the The American Association of Variable
Star Observers (AAVSO) Variable Star Index. Overall,

https://github.com/m-schochet/asas-sn-cnn/blob/main/plots/subpopulations.ipynb
https://github.com/m-schochet/asas-sn-cnn/blob/main/plots/det_frac_mollweide_hr.ipynb
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Our sample shows a similar distribution compared to Kepler,

with the exception the large clumping of stars at Prot = 25±3

days (sidereal alias). �

we find the average percent difference across these 467
stars is ≤1.9%, suggesting our network excels at infer-
ring true Prot for unusually active and rapidly rotating
subgiants.

7. CONCLUSION

We present a new neural network trained to infer
variability periods for stars observed by ASAS-SN. We
trained our neural network on simulated light curves
(Z. Claytor et al. 2022). We performed various tests to
validate the robustness of our neural network, including
changing our training set and using different network
architectures. From the full ASAS-SN catalog, we are
able to infer 208,260 periods. 196,610 of these stars were
matched with Gaia counterparts and explored in Sec. 6.
We provide 108,361 stars (55.11%) categorized as giants,
38,860 stars (19.76%) categorized as cool dwarfs, 45,909
(23.35%) categorized as subgiants, and 3480 (1.77%)
categorized as hot stars. Within those predictions, we
validate a subset of those periods and report:

1. We infer 3,480 periods for hot stars (Gaia Bp −
Rp < 0.6) that we determine are likely spurious.
(Sec. 6.1)

2. We infer 108,361 periods from luminous giant
stars. We find that these periods correspond to
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Figure 19. A comparison between our inferred Prot and

the Prot taken from the American Association of Variable

Star Observers (AAVSO) Variable Star Index for stars in

E. Leiner et al. 2022. We find that the majority of our

Prot are within ∼ 10% agreement with those presented

in E. Leiner et al. 2022. Several stars at short periods

(Prot < 5 days) are in disagreement, which is unsurprising

due to the limitations of our neural network. �

expected oscillatory frequencies derived from as-
teroseismic relations. (Sec. 6.2)

3. We infer 29,473 periods for bright cool main se-
quence dwarfs, 26,593 of which are new in ASAS-
SN. By cross-matching our rotation periods, we
find our catalog follows known trends in period-
color space, including a dearth of measured Prot

in the intermediate period gap. (Sec. 6.3)

4. We infer 45,909 periods for a mixed sample of stars
that includes subgiants, active RSCVn-type sys-
tems, and anomalous sub-subgiants, which are in
agreement with previous works. (Sec. 6.4)

Our results highlight the strengths and limitations of
our network architecture. We are reliably able to infer
periods driven by spotted photometric variability and
asteroseismic oscillations. On the other hand, our ar-
chitecture struggles to detect confident rotation periods
for hot stars, stars with Prot < 7 days, and stars with
periods near the sidereal month (∼ 27d). Regardless,
we successfully demonstrate that we are able to recover
Prot from sparsely sampled ground-based observations.
We believe this work can serve as the framework for
applying deep-learning methods to other ground-based
surveys like LSST as well as space-based observatories

https://github.com/m-schochet/asas-sn-cnn/blob/main/plots/subpopulations.ipynb
https://github.com/m-schochet/asas-sn-cnn/blob/main/plots/subpopulations.ipynb
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with complex sampling such as the Nancy Grace Roman
mission.

8. DATA AVAILABILITY

We host the majority of data products
and catalogs created to accomplish this work
on Zenodo (M. Schochet et al. 2025) at
https://doi.org/10.5281/zenodo.15848601. In partic-
ular, we host the following files:

1. allgaiadata.parq – Gaia DR2 colors, magni-
tudes, and parallaxes cross-matched by ID to all
ASAS-SN stars in our sample.

2. reportable.csv – The reported rotation periods
for our best catalog of predictions with a fractional
uncertainty below 25% along with ancillary Gaia
DR2 and DR3 information. We provide a more
detailed description of the information contained
in this table in Table 4.

3. training clumpstars.csv – The list of red clump
stars we used to create our training set.

4. allnetworkpredictions.zip – The predicted ro-
tation periods from all four neural networks ex-
plored in this work.

5. asassn cnn model weights.zip – The model
weights for all of the neural networks described
in Section 4.

Additionally, the code for this project is hosted on
GitHub at https://github.com/m-schochet/asas-sn-cnn.
We note that the entire ASAS-SN dataset—as either
transformations or raw data—is substantially too large
to host on any external platform; if these files are of
interest please reach out to the authors.
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Table 4. Columns of our Gold Sample of ASAS-SN Sources with Inferred Periods found on Zenodo

(M. Schochet et al. 2025)

Column Description

asas sn id Unique ASAS-SN identifier

period CNN Output Prot

sigma CNN Output Prot error

dr3 source id Gaia DR3 designation

dr2 source id Gaia DR2 designation

edr3 source id Gaia EDR3 designation

KIC Kepler Input Catalog identifier

tic id TESS Input Catalog identifier

ra rad Gaia DR2 right ascension (rad)

dec rad Gaia DR2 declination (rad)

parallax Gaia DR2 parallax (mas)

abs g mag Gaia DR2 MG (not extinction corrected)

Tmag TESS magnitude

phot g mean mag Gaia DR2 G magnitude

phot bp mean mag Gaia DR2 BP magnitude

phot rp mean mag Gaia DR2 RP magnitude

radius val Gaia DR2 photometric radius [R⊙]

lum val Gaia DR2 photometric luminosity [L⊙]

ruwe Gaia DR2 renormalized unit weight error

vbroad Gaia DR3 spectroscopic rotational broadening [km s-1]

vbroad error Gaia DR3 spectroscopic rotational broadening error

catwise w1 CatWISE W1 (3.4 micron) magnitude

catwise w2 CatWISE W2 (4.6 micron) magnitude

mh xgboost Gaia XGBoost catalog (R. Andrae et al. 2023) [M/H] [dex]

teff xgboost Gaia XGBoost catalog (R. Andrae et al. 2023) effective temperature [K]

logg xgboost Gaia XGBoost catalog (R. Andrae et al. 2023) surface gravity [dex]

in training yes or no whether this object is in the training set for this work

in xgboost training True orFalse whether this object was in the training set for the XGBoost parameters

simulation number what simulation was injected into this object if it was in the training set
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tinues to be, home to many Native Nations. We fur-
ther recognize that the main campus of the University
of Florida is located on the ancestral territory of the
Potano and of the Seminole peoples. The Potano, of
Timucua affiliation, lived here in the Alachua region
from before European arrival until the destruction of
their towns in the early 1700s. The Seminole, also
known as the Alachua Seminole, established towns here
shortly after but were forced from the land as a result
of a series of wars with the United States known as the
Seminole Wars. We, the authors, acknowledge our obli-

gation to honor the past, present, and future Native
residents and cultures of Florida.

Software: pyasassn (K. Hart et al. 2023) butterpy
(Z. Claytor et al. 2022; Z. Claytor et al. 2024a),
Lightkurve (Lightkurve Collaboration et al. 2018),
AstroPy (Astropy Collaboration et al. 2013, 2018, 2022),
astroquery (A. Ginsburg et al. 2019), iPython (F. Perez
& B. Granger 2007), Matplotlib (J. Hunter 2007),
NumPy (C. Harris et al. 2020), Pandas (W. McKinney
2010), polars (R. Vink et al. 2025), PyTorch (A. Paszke
et al. 2019), SciPy (P. Virtanen et al. 2020)
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Curtis, J. L., Agüeros, M. A., Matt, S. P., et al. 2020, ApJ,

904, 140, doi: 10.3847/1538-4357/abbf58

Daher, C. M., Badenes, C., Tayar, J., et al. 2022, MNRAS,

512, 2051, doi: 10.1093/mnras/stac590

Davenport, J. R. A. 2017, ApJ, 835, 16,

doi: 10.3847/1538-4357/835/1/16

Davenport, J. R. A., & Covey, K. R. 2018, ApJ, 868, 151,

doi: 10.3847/1538-4357/aae842

do Nascimento, J.-D., Da Costa, J. S., & Castro, M. 2012,

A&A, 548, L1, doi: 10.1051/0004-6361/201219791
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APPENDIX

A. INJECTION ALGORITHM

Each of our ASAS-SN noise light curves can be expressed as a list, Φ, which contains tuple values representing each
data point.

Φ = [ϕi(ti), ϕii(tii), ..., ϕn(tn)] (A1)

where lowercase ϕ variables represent flux measurements, and t variables represent time stamps. Given that the
butterpy simulations are created at 30 minute cadence, the first step in our injection algorithm is to linearly interpolate
the simulation fluxes to the time stamps of our noise light curve Φ. If we represent our butterpy simulations as Θ,
where (times given in minutes):

Θ = [θ1(t1), θ2(t2), ..., θn(tn)] (A2)

tn = t1 + 30(n− 1); n = 1, 2, 3... (A3)

Then for each simulation-template pair, the full algorithm says that our interpolated flux, Γ, is:

Γ = [γi(ti), γii(tii), ..., γn(tn)] (A4)

γn(tn) =
ϕn ∗ [(θn ∗ (tn+1 − tn)) + (θn+1 ∗ (tn − tn))]

median(Θ) ∗ (tn+1 − tn)
(A5)

B. “CHUNKY LOMB SCARGLE” ALGORITHM

The following algorithm is taken essentially line by line from the LS wavelet function found in the SkyPatrol
GitHub (https://github.com/asas-sn/skypatrol/tree/master/pyasassn/wavelet.py) with minimal adjustments to vari-
able names for readability.

import numpy as np
from astropy.timeseries import LombScargle

def LS_wavelet (times, frequencies, timestamps, fluxes, fluxerrors, tradeoff):
:param times: Array of times where the wavelet power should be evaluated
:param frequencies: Array of frequencies where the wavelet power should be evaluated
:param timestamps: Input time series time stamps
:param fluxes: Input time series dynamical measurement (fluxes in this scenario)
:param fluxerrors: Measurement uncertainties for the "fluxes" time series
:param tradeoff: Tradeoff between time and frequency resolution (has been
preset to 2 throughout this work)

array = np.full(len(times), len(frequencies), np.nan)

def window(x):
return np.exp(-x**2/2)

for j, f in enumerate(frequencies):
dt = tradeoff * 1/f
for i, t in enumerate(times):

w = window((x-t)/dt)
m = np.isfinite(np.nan_to_num(fluxerrors/window, nan=np.inf))
ls = LombScargle(times[m], frequencies[m], dy=(fluxerrors/window)[m])
p = float(ls.power(f, normalization=‘psd’))
p /= (np.sqrt(2 * np.pi) * dt)
array[i, j] = p

return array

C. CROSS-MATCHED CATALOGS

For the analysis in Section 5.2, we present the number of overlapping cross-matched stars between archival works in
Table 5.

https://github.com/asas-sn/skypatrol/tree/master/pyasassn/wavelet.py
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Table 5. Overlap of Objects in Different Catalogs

Catalog Y. Lu

et al.

(2022)

A. Santos

et al. (2020,

2021)

Z. Claytor

et al. (2024b)

Z. Claytor

& J. Tayar

(2025)

C. Christy

et al. (2023)

R. Hol-

comb et al.

(2022)

I. Colman

et al. (2024)

Lu et al. x x x x x x x

Santos et al. ∼ 14 x x x x x x

Claytor et al. ∼ 0 ∼ 1 x x x x x

Claytor and Tayar 16 20687 ∼ 1 x x x x

Christy et al. 369 ∼ 61 89 49 x x x

Holcomb et al. ∼ 108 ∼ 32 161 ∼ 10 443 x x

Colman et al. ∼ 43 ∼ 34 216 ∼ 11 496 4863 x

Note—Here we show overlapping stars between the catalogs that we compare to. Comparisons with integers are absolute overlaps, while
comparisons with a ∼ sign indicate lower limits of overlapped objects (to account for any missed overlapping objects when matching by

identifiers in different surveys).
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