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Abstract

Stars exhibit a range of variability periods that depend on their mass, age, and evolutionary stage. For space-based
photometric data, convolutional neural networks (CNNs) have demonstrated success in recovering and measuring
periodic variability from photometric missions like Kepler and TESS. All-sky ground-based surveys can have
similar if not longer baselines than space-based missions; however, these datasets are more challenging to work
with due to irregular sampling, more complex systematics, and larger data gaps. In this work, we demonstrate that
CNNs can be used to derive variability periods from ground-based surveys. From the All-Sky Automated Survey
for Supernovae, we recover 208,260 variability periods between 1 and 30 days, approximately 60% of which are
new detections. We recover periods for active RSCVn, anomalous sub-subgiants, and cool dwarfs that are
consistent with previously measured rotation periods, while periods for stars above the Kraft break are generally
spurious. We also identify periodic signals in tens of thousands of giant stars that correspond to frequencies of
stellar oscillations rather than rotation. Our results highlight that CNNs can be used on sparsely sampled ground-
based photometry to recover periodicity. We conclude that the findings of our work are very promising for the
potential recovery of hundreds of thousands of stellar rotation periods in data from the Vera C. Rubin
Observatory’s Legacy Survey of Space and Time and the Nancy Grace Roman Space Telescope’s Galactic Bulge
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1. Introduction

Stellar rotation and intrinsic variability evolve over time.
Stars inherit angular momentum from initial cloud collapse,
and low-mass stars lose their angular momentum in stellar
winds (A. Skumanich 1972; S. P. Matt et al. 2015), similar to
our own solar wind (E. N. Parker 1958; E. J. Weber &
L. Davis 1967). Comprehensive analyses of single star
rotational evolution have demonstrated that many other
phenomena drive interior angular momentum transport such
as meridional circulation or magnetic instabilities (e.g.,
A. Maeder & G. Meynet 2000; S. Mathis 2013; C. Aerts
et al. 2019). More recent studies have suggested that there is
still much to uncover about the rotational evolution of low-
mass stars, including truncated braking (J. L. van Saders et al.
2016), interior behavior at the fully convective boundary
(F. Chiti et al. 2024), stalled spindown (J. L. Curtis et al.
2020), the effect of spots (L. Cao & M. H. Pinsonneault 2022),
core—envelope angular momentum transfer in cool stars
(L. Cao et al. 2023), radius inflation (G. Somers & K. G. Stassun
2017), the distribution of rotation rates at birth (C. T. Coker
et al. 2016; G. Somers et al. 2017), and the consequences of
binarity (J. Tayar et al. 2015; A. Phillips et al. 2023; J. Yu
et al. 2024).
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Starting with the Sun, observers have used the passage
of spots across the line of sight and the resulting change
in surface brightness to estimate a solar rotation period
(R. Carrington 1863). Dedicated monitoring campaigns can
regularly monitor the brightness of stars, allowing observers to
understand the rotational properties of stars like the Sun
(S. Bhattacharya et al. 2021), young stars (P. Hartigan et al.
2011; A. D. Feinstein et al. 2020; S. T. Douglas et al. 2024),
stars in clusters (S. T. Douglas et al. 2017; L. Long et al. 2023;
L. Sha et al. 2024), low-mass field M dwarfs (J. Irwin et al.
2011; E. R. Newton et al. 2016), and more-massive stars
(J. Sikora et al. 2019), among others. Expansive repositories of
photometric light curves from space-based surveys at high
cadence and with minimal data gaps, like Convection,
Rotation, and planetary Transits (CoRoT; M. Auvergne
et al. 2009), Kepler (W. J. Borucki et al. 2010), Kepler Second
Light (K2; S. B. Howell et al. 2014), and the Transiting
Exoplanet Survey Satellite (TESS; G. R. Ricker et al. 2014)
have allowed for the precise measurement of stellar rotation
periods. To date, tens of thousands of stars have measured P,
values from space-based photometric monitoring missions
including CoRoT, Kepler, K2, and TESS (S. Meibom et al.
2011; L. Affer et al. 2012, 2013; J.-D. do Nascimento et al.
2012; A. McQuillan et al. 2013, 2014; A. R. G. Santos et al.
2019, 2021b; B. L. Canto Martins et al. 2020; T. Reinhold &
S. Hekker 2020; E. A. Avallone et al. 2022; R. J. Holcomb
et al. 2022; Z. R. Claytor et al. 2024b). However, these
catalogs suffer from a limited time baseline determined by the
individual telescope monitoring patterns (Z. R. Claytor et al.
2024b) and lifetime (A. R. G. Santos et al. 2019). Future
missions—such as the Nancy Grace Roman Space Telescope
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(D. Spergel et al. 2015)—will help expand this existing sample
of stars.

Ground-based surveys have been able to measure stellar
P, specifically in stellar clusters (S. Meibom et al. 2011;
D. J. Fritzewski et al. 2021; E. M. Cole-Kodikara et al. 2023).
However, generalizable studies across the field are challenging
due to a combination of difficulties in collecting observations
at high enough cadence and over a sufficiently long baseline to
measure the range of possible P.,. Despite these challenges,
surveys such as MEarth (P. Nutzman & D. Charbonneau
2008), the Zwicky Transient Facility (ZTF; E. C. Bellm et al.
2019), and the All-Sky Automated Survey for Supernovae
(ASAS-SN; B. J. Shappee et al. 2014; C. S. Kochanek et al.
2017) have fortuitously satisfied both requirements and
have measured P, for ~100,000 stars (J. Irwin et al. 2011;
E. R. Newton et al. 2016; T. Jayasinghe et al. 2019, 2020;
M. Pawlak et al. 2019; Y. L. Lu et al. 2022; A. Phillips
et al. 2023).

ASAS-SN (B. J. Shappee et al. 2014; C. S. Kochanek et al.
2017) is a ground-based all-sky monitoring survey designed to
observe the sky nightly for transient events. ASAS-SN began
collecting V-band observations of objects with V,,, <17 in
2014, and in 2018, all of the units were switched to g-band
filters that could observe objects with gy, < 18 (C. T. Christy
et al. 2023). The full ASAS-SN dataset has more than
100 million sources, and the collection includes a substantial
number of stellar light curves, some of which possess likely
rotation signals that have previously been characterized
(T. Jayasinghe et al. 2019, 2020; M. Pawlak et al. 2019).

Traditional measurements of P, have employed Lomb—
Scargle periodograms (N. R. Lomb 1976; J. D. Scargle 1982),
autocorrelation functions (A. McQuillan et al. 2013, 2014),
wavelet transformations (S. Mathur et al. 2010; R. A. Garcia
et al. 2014), and Gaussian processes (R. Angus et al. 2018;
T. A. Gordon et al. 2021). However, these methods are
computationally intensive and require careful algorithm
profiling to ensure efficient computations when applied to
catalog sizes of the order of 10® (M. W. Coughlin et al. 2021).
On the other hand, machine learning (ML) is a powerful
tool that can be used to analyze large data. Deep-learning
networks have already demonstrated their utility across a broad
range of astrophysical topics such as elemental abundance
determination (H. W. Leung & J. Bovy 2019), flare statistics
(A. D. Feinstein et al. 2020), galaxy redshift predictions
(Q. Lin et al. 2024), and cosmological parameter estimation
(J.-Y. Lee et al. 2024) to name a few. While ML models may
systematically underestimate extreme values (Y.-S. Ting
2024), these techniques are still a powerful tool that can be
used to infer conclusions from large, complicated datasets.

We present a new convolutional neural network (CNN)
framework that is capable of measuring stellar variability periods
from ASAS-SN light curves, including a significant number of
periods that we attribute to rotation. The paper is structured as
follows. In Section 2, we describe the ASAS-SN data we use. In
Section 3, we discuss our simulated training set and CNN
architecture. In Section 4, we present different tests of our CNN
to demonstrate the robustness of our method. In Section 5, we
validate our inferred P, by comparing to archival catalogs. In
Section 6, we present trends in inferred P, as a function of
different stellar populations. We conclude in Section 7. We
provide all of the scripts used to complete this work hosted
on GitHub at https://github.com/m-schochet/asas-sn-cnn. We
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Figure 1. A Hertzsprung—Russell (H-R) diagram of stars observed by ASAS-
SN and colored using Gaia (Gaia Collaboration et al. 2016, 2018; D. W. Evans
et al. 2018). The bins are only filled if they contain 1000 or more stars. Neither
our absolute magnitudes nor our photometric colors are extinction
corrected. &
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include a GitHub icon () next to figures in this work that
link to Jupyter notebook files used to generate that figure,
and all notebooks can also be accessed on Zenodo at
doi:10.5281/zenodo.17387593.

2. ASAS-SN Data

The ASAS-SN survey has a 10 yr baseline of photometric
observations for millions of stars (Figure 1). Each ASAS-SN
unit has four 14 cm telescopes on a common mount; there are
five ASAS-SN units, located in Hawai’i, Texas, South Africa,
and two units in Chile. This configuration allows ASAS-SN to
observe the entire visible sky every night. We used Globus
(I. Foster 2011; B. Allen et al. 2012) to transfer the ASAS-SN
catalog from the University of Hawaii to the University of
Florida supercomputing servers (a.k.a. HiPerGator).

ASAS-SN data is separated into catalogs based on NASA’s
High Energy Astrophysics Science Archive Research Center
(HEASARC), with the addition of the ASAS-SN stellar main
catalog to denote all observed stars. We downselect the stars we
analyze using the following criteria:

1. All stars were observed in the same filter. This limits our
light curve to observations that were taken after all
ASAS-SN units were equipped with g-band filters (MJD:
58423).

2. All stars have an identical time baseline. We choose to
analyze stars with observations from UT 2019 January 1
(MIJD: 58484.5) to UT 2024 January 1 (MJD: 60311.5).

3. The light curves do not have any bad quality observa-
tions. We used two metrics to distinguish bad from good
photometric points. First, we flagged any data points
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where the measured magnitude error, om.e =99, as
assigned by the ASAS-SN data reduction pipeline.
Second, the ASAS-SN data reduction pipeline labels
photometric points as “G” if the observation was “good.”
We use this flag to remove bad points as well.

4. The light curve possesses >150 photometric observa-
tions over the baseline defined in Criteria 2.

We found that ~97% of the full ASAS-SN stellar _main
catalog passed our four criteria, resulting in a total of
96,304,837 light curves.

3. The Convolutional Neural Network

Here we present how we generate our simulated light curves,
the transformation applied to our light curves for CNN input,
and the architecture of our neural network. From our simulated
light curves, we divide the set into our training (“how to set
weights”), validation (“how is the model doing, when do we stop
training”), and test (“how good is the trained network™) sets. The
ratio between these sets is 80:10:10 unless noted otherwise.

3.1. Data Preparation

The efficiency of a CNN is highly dependent on the training
data it is provided, with a potentially greater impact on
network performance than even the fine-tuning of hyperpara-
meters (J. Tayar et al. 2023). Due to the observing strategy,
cadence, and data quality of ASAS-SN, the data is known to
contain systematic noise and strong aliases at 1, 2, and 30 days
(T. Jayasinghe et al. 2020). As a result, we need to ensure our
training data will incorporate these real ASAS-SN “noise”
signals as well as a known P,. To achieve this, we generate a
set of synthetic light curves with known P, and inject them
into ASAS-SN light curves that are meant to capture ASAS-
SN systematics. These injected light curves constitute our
training, validation, and testing sets.

3.1.1. Simulated Rotation Periods

We created a simulated training set following the procedure
of Z. R. Claytor et al. (2022, hereafter C22). This provides a
good test as to whether simulated training samples—that were
previously used to infer P, from space-based photometry—can
also find use with ground-based observations. C22 generated a
library of simulated light curves with spot-modulated rotation
periods and then “injected” the simulated periodicity into a
quiescent sample of sources that possesses the systematic noise
of the survey the neural network will predict on.

We simulate light curves with butterpy v1.0.0 (Z. Claytor
et al. 2024a), which generates and evolves light curves with
physically motivated models of stellar spot emergence based on
the simplified flux emergence model of S. Aigrain et al. (2015).
We simulated 1 million light curves with input parameters
sampled from the distributions in Table 1.

3.1.2. ASAS-SN Training Templates

Here we describe our best “quiescent” sample of light curves
to inject our butterpy models into. C22 injected their
butterpy simulations into a set of galaxies within the
TESS Southern Continuous Viewing Zone to model known
TESS systematics, which enabled their prediction of P, in TESS
observations. We tried a similar approach using the ASAS-SN
Million Quasar Catalog (E. W. Flesch 2023, hereafter milliquas).

Schochet et al.

Table 1
Distribution of Simulation Input Parameters
Parameter Range Distribution Symbol
Equatorial rotation period 1-30 days Uniform Peq
Activity level 0.1-10x solar Log-uniform A
Activity cycle period 1-40 yr Log-uniform Teycle
Activity cycle overlap 0.1 yr—Teycle Log-uniform Tovertap
latitudepor min 0°-40° Uniform Amin
latitudepor max Amin + 5°-85° Uniform Amax
Spot lifetime 1-10 Log-uniform Tspot
Inclination 0°-90° Uniform i
in sin?i
Magnetic field scaling 0.005 Fixed Qimed
factor
Latitudinal rotation shear 0.1-1 (50%) Log-uniform AQ/eq
0 (25%) Fixed
—1to Log-uniform
—0.1 (25%)

Note. We adopt nearly the same the distributions used by Z. R. Claytor et al.
(2022), and use similar values to those introduced in their work. The periods
sampled are in a smaller range than expected in nature; however, this range of
periods was chosen to provide the best chance of inferring P, given the
irregular cadence and baseline of examination for the ASAS-SN stars.

We used the SkyPatrol Python client pyasassn (K. Hart et al.
2023) to download all light curves from the mi11iquas catalog
hosted on the SkyPatrol website.” We then applied the same
quality cuts detailed in Section 2 to each source, resulting in a
final template sample of 203,991 milliquas sources. However,
we found that this network architecture was incapable of
detecting P, in ASAS-SN stellar data that was not provided to
the network during training, indicating that milliquas templates
were not an ideal example of ASAS-SN systematics.

Recently, Z. R. Claytor & J. Tayar (2025, hereafter C25)
extended their work (C22; Z. R. Claytor et al. 2024b) to the
Kepler Bonus dataset (J. Martinez-Palomera et al. 2023).
However, due to a lack of quasars and galaxies in the Kepler
field of view, the authors used light curves of red clump stars
as their templates. These stars are typically slowly rotating
(J. Tayar & M. H. Pinsonneault 2018; C. M. Daher et al. 2022;
R. A. Patton et al. 2024) and have nondetectable rotation
signatures (see, e.g., T. Ceillier et al. 2017). To identify red
clump stars, C25 computed the absolute Gaia magnitude for all
Kepler stars (Ms), where

Mg =G — Slogy(d) + 5. (1)

In Equation (1), G is the Gaia G-band magnitude (phot g -
mean_mag), and d is the distance to the object calculated as

1000

d[pc] = : @)

In Equation (2), p is the parallax given in milliarcseconds.
Using these absolute Gaia magnitudes, red clump stars were
identified as stars with —0.5 < Mg < 1.5.

> hitp: / /asas-sn.ifa.hawaii.edu/skypatrol /
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Figure 2. The light curve of ASASSN-V J050623.37-712251.8. Gaps in the data are intrinsic to ASAS-SN light curves. First row: original light curve. Second row:
an example butterpy simulation over the same baseline. The complex sinusoidal pattern demonstrates the intricate physics that butterpy simulations can
generate. Third row: a but terpy model injected into a noise template. Fourth row: the “injected” light curve minus the original noise template to demonstrate that

we can recover the injected periodicity and the expected observing gaps. &

We developed a secondary training set using red clump stars
as our ASAS-SN templates. We found there are of the order
of 10,000,000 sources in the stellar main catalog with
—0.5 < Mg < 1.5, which is a sufficient number of templates to
curate a training set of an appropriate size for our dataset.
Ultimately, we used 1,000,000 red clump stars as the ASAS-
SN templates into which we injected butterpy periodic
signals, mostly due to computational limitations. Where there
are large uncertainties in the parallax, this estimate of M may
be offset from the true absolute magnitude. In particular, we
note that we have not applied the zero-point correction
from X. Luri et al. (2018) and have not accounted for the
Bayesian uncertainty that is necessarily included in any
Gaia astrometric measurements. However, even in cases of
large astrometric uncertainty (of the order of 0.5 mas and
—0.029 mas for the zero-point offset), we would expect a
difference in measured versus absolute magnitude of the order
of ~3 for the most significantly affected sources. Considering
that we are targeting red clump giants that are bright and
nearby (C. Soubiran et al. 2003), we do not expect significant
issues with the astrometric uncertainty. These errors should not
affect our selection of appropriate templates, as any stellar
light curve will necessarily incorporate the systematic noise
from ASAS-SN that we are interested in teaching our CNN to
ignore. Thus, we use a combination of milliquas and red clump
star templates when generating our training, validation, and
testing sets, and we explore the specifics further in Section 4.2.

We note that when originally curating the red clump sample,
there were 1105 repeat templates. This propagated to 2210
objects in our training set having a nonunique red clump
template. However, the repetition of training templates does not
significantly influence the predictive efficiency of our CNN
(Section 4.4). Even so, we note that three stars that we report P,
for were contained in our training set and repeated once. Those
targets are TIC 388043164 (Protprea = 18.805 £ 2.45 days), TIC
397920546 (Progprea = 24.962 £ 6.23 days), and TIC 461382691
(Protpred = 25.364 £ 4.11 days). Overall, the slight repetition of a
few templates does not impact the results of the CNN.

3.2. Injection

We combine our synthetic butterpy light curves and our
templates using the following algorithm. First, we linearly
interpolate the butterpy light curve to the time steps of the
ASAS-SN template light curve. Next, we piecewise multiply
each ASAS-SN flux value to the interpolated but terpy flux at
those time steps. Finally, we normalize the resulting light curve
by the median value of butterpy fluxes. We describe the full
algorithm in Appendix A. We chose the median value, as it is
more robust against outliers. We applied this algorithm across
our entire template sample (milliquas and red clump stars). This
gave us our “injected” flux training set. This final set contains
periodicity from the simulated butterpy signal and systema-
tics from ASAS-SN. We show an example of this in Figure 2.
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Figure 3. An example signal transformation applied to ASASSN-V
J050623.37-712251.8, a known spotted rotational variable (T. Jayasinghe
et al. 2018). We interpolate over empty regions of the transform using a cubic
interpolation. The vertical striping is indicative of noise. Our neural network
recovers a period of 27.3 + 2.23 days, which is consistent with the 26.82 days
period from T. Jayasinghe et al. (2018). &

3.3. Signal Transformation

Following the injection of the butterpy simulated
signals, we apply a signal transformation to each light curve
to convert them into 2D images that display frequency
information across the temporal domain. CNNs learn features
from their respective training datasets, with effective predic-
tions in the astrophysical regime demonstrated by networks
working with 1D data (M. Hon et al. 2017; W. Liu et al. 2019),
or more commonly on 2D “images” (W. W. Zhu et al. 2014;
B. Hoyle 2016; A. K. Aniyan & K. Thorat 2017; E. J. Kim &
R. J. Brunner 2017; J. Wilde et al. 2022). While studies have
shown that periodicity can be learned from 1D stellar light
curves (S. Iglesias Alvarez et al. 2023), these results have
relied on the regular cadence of missions like Kepler. As a
result, it is uncertain whether the irregular cadence and noisy
ground-based systematics of ASAS-SN are ideal for this type
of architecture.

Following the procedure of C22 for handling gaps and
systematics in TESS, we apply a signal transformation to
convert our light curves from time series into 2D images that
display frequency information as a function of time. This is
done through the application of a Lomb-Scargle periodogram
(Press & Rybicki algorithm, W. H. Press & G. B. Rybicki
1989) across sections of the light curve and across a range
of frequencies that outputs a 2D image that approximates a
modified wavelet power spectrum (C. Torrence & G. P. Compo
1998).

To perform this transformation, we use the pyasassn.LS
wavelet function.® This function takes time series data and
associated uncertainties, and runs through two nested for-
loops, first in frequency and then in time space. In each
frequency loop, a “time step” (Ar) is created that is
proportional to the frequency being evaluated to maintain the
“wavelet” structure at all frequencies. Then, inside the time
loop, the function generates a Gaussian-modulated sinusoid
window that is shifted in time (to overlap on the section of the
light curve being evaluated) and divided by the Ar created
earlier to maintain the wavelet structure. The window is then
divided out of the uncertainties—which, in principle, results in

® The pyasassn Python client can be accessed at https://github.com/asas-
sn/skypatrol.

Schochet et al.

the uncertainties nearest to the time step being evaluated to be
up-weighted—after which all noninteger uncertainties are
masked. The algorithm then performs a Lomb-Scargle
periodogram (N. R. Lomb 1976; J. D. Scargle 1982) across
the entire light curve, excluding masked points. The light
curve’s power at the frequency being evaluated is then
measured and scaled to the integral of our window function

. power .
integrated over the Ar that we created ( o At). This

formulation leads us to refer to this algorithm as the “chunky
LSP,” although the output of this function is a 2D array that is
analogous to a wavelet transformation (see Appendix B for a
programmatic representation of this algorithm). We generate a
time grid of length 128 with evenly spaced intervals over our
baseline of analysis (MJD 58484.5-60311.5) along with a
frequency grid of length 128 using evenly spaced periods
ranging from 1-30 days. Any star with a period under 30 days
will have undergone more than 60 rotations over our baseline.

Some light curves have intervals of time with fewer than
one measurement per day. When performing the chunky LSP
on these sections of the light curve, the returned power at low
frequencies can be a number of erroneous values including
400 or NaN. This is a problem for feeding the transformations
into the neural network because we require a common scale of
values to ensure uniformity in the data the CNN sees. The
simplest common scale for 2D images is to normalize each
pixel to an 8bit integer in the range [0, 255], but this is
impossible if a value of oo or NaN appear in the
transformation. To circumvent this, after performing the
chunky LSP, we perform 2D cubic interpolation with
scipy.interpolate.griddata to fill in these values.
An example of what this transformation looks like is shown in
Figure 3. Additionally, the 2D grid interpolation falls back to
filling grid points with an NaN value if there are no real values
within the cubic region with which to interpolate. In the cases
where this does occur, we additionally mask over these NaN
values and replace them with O; however, we explore the
impact of this choice further in Section 4.5.

3.4. CNN Architecture

Our CNN uses a similar architecture to that presented
in C22, and used in Z. R. Claytor et al. (2024b, hereafter C24)
to predict periods from noisy space-based data. We build our
network using the PyTorch python package (torch;
A. Paszke et al. 2019) using the network architecture in
Table 2. Our network uses a series of convolutional layers with
rectified linear unit (ReLU) activation followed by time
dimension max-pooling. ReLU is a nonlinear activation
function with the form

f(x) = max(0, x), 3)

which allows for quick learning, as it outputs the input if
positive or O if negative.

We chose kernels in the convolutional and pooling layers to
ensure equivariance in the frequency domain and translational
invariance in the time domain. This means that we prevent
pooling in the frequency dimension—as that is what we are
predicting—and we ensure that the periodicity in the
transformation can be identified regardless of where in
the time dimension of the transformation it is found (for more
details, see I. Goodfellow et al. 2016). The output of the final
convolutional layer is then flattened and passed through three


https://github.com/m-schochet/asas-sn-cnn/blob/main/plots/figure3.ipynb
https://github.com/asas-sn/skypatrol
https://github.com/asas-sn/skypatrol
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Table 2
Convolutional Neural Network Architecture

Layer Type Number of Filters® Filter Size Stride Activation Dropout Output Size
Input image 64 x 64
Conv2D 8 3x3 1 x1 ReLU 62 x 62 x 8
MaxPool2D 1 1x3 1 x3 10% 62 x 20 x 8
Conv2D 16 3x3 I x1 ReLU 60 x 18 x 16
MaxPool2D 1 1 x3 1 x3 10% 60 x 6 x 16
Conv2D 32 3x3 1 x1 ReLU 58 x 4 x 32
MaxPool2D 1 1 x4 1 x4 10% 58 x 1 x 32
Flatten 1856
Dense ReLU 10% 256
Dense ReLU 10% 64
Output (Dense) Softplus 2

Note. We model the structure of C22 and use three 2D convolutional layers with ReLU activation, max-pooling, and 10% dropout. The output goes through a series
of fully connected layers—also using ReLU activation and 10% dropout—and with softplus output. We also use the Adam optimizer (D. P. Kingma & J. Ba 2014)

with negative log-Laplacian loss to predict rotation periods with uncertainties.

# We explore how varying the number of convolutional filters affects predictive efficiency by testing four different filter architectures when training our network (see
Section 4.1). This column displays the number of filters for the network whose inferred periods are reported in this work.

fully connected layers, also with ReLU activation. We use a
dropout of 10% in the max-pooling and fully connected layers,
which randomly assigns a percentage of neurons to O in
training, thus removing their contributions from the network.
This ensures that learning is focused on more generalized
features. The final fully connected layer used Softplus
activation, which has the form

f(@x) =1In(1 + e%). “4)

Softplus is a smooth approximation of the ReLU function,
which ensures that this final layer preserves differentiability as
well as requiring a positive output.

We use the Adam optimizer (D. P. Kingma & J. Ba 2014),
which allowed our network to vary the learning rate during
training, and used a negative log-Laplacian likelihood for our
loss function. This loss function allows for the output of both a
prediction (P.q) and an error (o)

Pre — B
[ — 11’1(20’) + | true pred| )

(%)
We caution against interpreting ¢ as a statistically rigorous
estimate of the error on our predictions, but rather as a rough
estimate of the accuracy. While in principle o can be used to
select a subsample of predictions that can be considered
“reliable” (such as in C25), we eventually decided to use the
metric of fractional uncertainty for this work to report our
“good” sample. Fractional uncertainty in our predictions is
calculated as

. . o
Fractional Uncertainty = s (6)
pred

and we discuss in more depth the decision to select our
reported sample of periods using this metric over a ¢ cut in
Section 5.1.

3.5. CNN Training

Our full partitioned dataset was imported as a single object,
and during training, we fed the transformations into the
network in batches. We used batch sizes of 100, 500 possible
total training epochs, 20 epochs for “early stopping patience,”

and a learning rate of 107°. Varying the batch size only
changes the relative speed of the CNN training. Our learning
rate was derived from C22. We explore the value of our “early
stopping patience” further in Section 4.1.

The training set was 80% of the full dataset, and it was used
to determine the model’s weights. The validation set, which
consisted of 10% of the dataset, was used to determine the
early stopping of training. In practice, this meant that we
ceased training the network when the average loss on the
validation set did not improve over a window of training
epochs determined by the “early stopping patience” hyper-
parameter. At this point, the model is considered trained, and it
is tested on the testing set made up of the remaining 10% of the
data. A demonstration of the network effectively minimizing
loss over the course of training is shown in the top of Figure 4.

While training, the network reports the period predicted for
each object. We can compare that to the assigned period from
the butterpy simulations to determine their reliability,
defined as

|[;)red - Ptrue| ) (7)
PU'L]C

Figure 5 shows the results for both the full sample (top), and
for those with fractional uncertainties <25%. We note here
that the lack of predictions at very short periods is not novel,
and this trend has been shown in identical networks applied to
TESS and Kepler Bonus data (C22; C24; C25). Our network
only reliably recovers periods for a small fraction of light
curves from the whole test set (only 26% have reliability
<10%). For periods with fractional uncertainty <25%, 71% of
periods are reliable to within 10%, and 88% are reliable to
within 20%; we discuss the distribution and reliability of
recovered periods more in Section 5.

4. Varying the CNN Inputs

The outputs of any machine learning algorithm are highly
sensitive to the data it was trained on. Beyond this, we wanted
to test whether an identical architecture used on space-based
photometry (C22; C25) can be used on noisier ground-based
photometry. To further validate the results of our presented
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Figure 4. The network’s loss output for both training and validation sets. Once
the network cannot reduce loss output over a number of epochs (set by the
early stopping patience parameter), training is ceased. We demonstrate this
trend for both a well-fit network (top, row 5 in Table 3) as well as a network
that overfit the training data (bottom, row 8 in Table 3). Overfitting can be
identified if the training loss continues to decrease while the validation loss
had many epochs previously began to asymptote. S

architecture, we perform several tests to examine how varying
our simulated light curves and hyperparameters affects the
recovery rate of P

Through various modifications of either our training set or
network architecture, we aim to address the following
questions:

1. How does the number of convolutional filters affect our
network’s output periods? (Section 4.1; Rows 1-4 in
Table 3; Figures 6(a)—(d).)

2. Are stars or quasars/galaxies the best noise template for
injection to teach our network to infer rotation periods?
(Section 4.2; Rows 1-8 in Table 3; Figures 6(a)—(h).)

3. How many training templates is the ideal number for
teaching our network? (Section 4.3; Rows 1 and 9 in
Table 3; Figures 6(a) and (i).)

4. Does repeating noise templates in the training set
substantially worsen our predictions? (Section 4.4; Rows
9-10 in Table 3; Figures 6(i) and (j).)

5. Does masking over areas of our transformation with
minimum non-NaN values improve our predictions over
masking with NaNs? (Section 4.5; Rows 1 and 11 in
Table 3; Figures 6(a) and (k).)

6. Does scaling the signal of our transformation improve
our predictions? (Section 4.6; Rows 1 and 12 in Table 3;
Figures 6(a) and (1).)

To address all of these questions, we use the milliquas light-
curve templates with injected butterpy P, This minor
difference in training sets does not affect the qualitative
conclusion from each test performed. All other properties of
the CNN remained the same as described in Section 3.5, unless
otherwise noted. We note that we use the fractional uncertainty
(Equation (6)) as our metric for evaluating the results of each
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Figure 5. The top panel compares the predicted and true periods for the entire
test set. The dotted black line is a 1:1 trend of Ppreq: Pirues While the red dotted
lines correspond to 10% differences (as in Equation (7)). The horizontal band
at predicted periods of 10-15 days represents a bias toward the probed
distribution median, here at ~15 days (see Figure 5 in C22 for a similar trend).
The bottom panel is identical to the top panel, but only includes predictions
with fractional uncertainties (Equation (6)) <25%. This shows that both (i) the
predicted fractional uncertainty is a good indicator of a successfully predicted
period, and (ii) the inferred periods are highly accurate when the fractional
uncertainty is <25%. Note that the color bar scaling between the panels is
different. &

test. We report the percentage of P, in the test set that the
network reported as accurate to within a fractional uncertainty
of 25%. We provide an overview of our changes for each test
in Table 3, and a visual summary of the results from each test
in Figure 6.

We recognize that there are different architecture and
training set configurations that can be applied to address all of
the aforementioned questions. Our aim is not to provide a
comprehensive overview of these different configurations, but
rather to validate the decisions made in our CNN presented in
Section 3.

4.1. Convolutional Filter Sizes

We want to identify the ideal number of convolutional filters
to use when predicting P,,. C22 did not identify any major
differences between predictions made by CNNs where the


https://github.com/m-schochet/asas-sn-cnn/blob/main/plots/figure4.ipynb
https://github.com/m-schochet/asas-sn-cnn/blob/main/plots/figure5.ipynb
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Table 3
Convolutional Neural Network Tests
Figure 6 Training Template Repeated Masking Number of Con- Predictive
Panel Section Set Size Catalog Templates Scaling Method volutional Filters Efficiency
(a) 4.1,4.2,4.3,4.5, and 4.6, 10° milliquas Yes Normal Nanmask 8/16/32 3.81%
(b) 4.1 10° milliquas Yes Normal Nanmask 16/32/64 4.35%
(c) 4.1 10 milliquas Yes Normal Nanmask 32/64/128 4.63%
(d) 4.1 10° milliquas Yes Normal Nanmask 64/128/256 4.56 %
(e) 4.2 10° clump No (~99%")  Normal Nanmask 8/16/32 19.82%
6] 4.2 10 clump No (~99%")  Normal Nanmask 16/32/64 21.54%
() 4.2 10° clump No (~99%")  Normal Nanmask 32/64/128 21.43%
(h) 42 10° clump No (~99%")  Normal Nanmask 64/128/256 21.79%
@) 4.3 and 4.4 203,991 milliquas Yes Normal Nanmask 8/16/32 0.18%
(@) 4.4 203,991 milliquas No Normal Nanmask 8/16/32 0.97%
&) 4.5 10° milliquas Yes Normal Minmask 8/16/32 0.19%
) 4.6 10° milliquas Yes 10x Nanmask 8/16/32 2.83%

Note. This table demonstrates the different predictive efficiencies of the networks tested in Section 4. Our tests demonstrate that the reductions of the training set
from 10° to ~10° reduced predictive efficiency several times over. Meanwhile, the majority of our tests revealed only marginal improvements while demonstrating
other prominent complications over the network whose parameters are shown in the first row of this table. The first column refers to the location of the scatterplot
demonstrating this network’s predictive efficiency in the summary Figure 6. The bold formatting emphasizes that predictive efficiency is the main indicator of

whether a test improved or worsened our network's performance.
a . .
See Section 3.1.2 for more details.

number of convolutional filters in the first Conv2D layer
varied from 8-64. We assess whether or not this is true with
ground-based photometry as well. We trained four unique
CNNs with varying filter sizes of 8 (16, 32, 64), 16 (32, 64,
128), and 32 (64, 128, 256) in the first, second, and last
convolutional layers, respectively.

We trained and predicted on the same examples for all four
networks. The results are presented in Figure 6(a), (b), (c), and
(d). While the overall predictive efficiency between these
models differs by ~1%, we find that our networks trained on
the largest number of convolutional filters were being overfit
(bottom of Figure 4) compared to our smaller networks (top of
Figure 4), despite using identical hyperparameters. This means
that our larger networks continue adjusting weights long after
the output predictions stopped “improving.” This could be
because the greater number of filters encourages the CNN to
identify more complicated trends that our data does not
possess. As a result, this test validates our initial choice of
convolutional filter sizes from Table 2. While each architecture
produces a high-fidelity catalog, we choose to report the
catalog from the CNN with the fewest convolutional filters.

4.2. Choice of Quiescent Source

We explore the quiescent templates used in our training set.
For all of the tests presented in Section 4, we use the milliquas
data as our noise templates. However, in our best-trained
CNN, our noise templates were instead red clump stars
(Section 3.1.2). Here, we aim to assess which “quiescent”
source provides a better template for capturing ASAS-SN
noise properties and systematics.

We use the same red clump selection protocol defined in
Section 3.1.2 (C25). We randomly chose 10° sources, without

repetition, from our clump sample to train a new CNN and
compare to the milliquas-only CNN, which has repetitive
templates. We also repeat this exercise for different numbers
of convolutional layers. We had each CNN predict on their test
sets. The results of this test are shown in Figures 6(a)—(h).
Our results demonstrate that the CNN’s ability to infer
reliable P, in its testing set improved more by than 500% by
changing the training set from milliquas to red clump stars. For
the purpose of predicting rotation periods from ASAS-SN
stars, this test validates our decision to use clump templates as
opposed to milliquas. There are several possible hypotheses
for why this may be, including the fact that quasars are
typically faint and intrinsically variable sources. In addition,
when the ASAS-SN pipeline performs aperture photometry on
a source, a 2 pixel annulus (~16”; see K. Hart et al. 2023) is
used. For stellar sources, this should not dramatically affect
our measurements from night to night, since they are point
sources; however, milliquas sources are basically all extended.
Again, the results of this work differs from those presented
in C22, where training on extended source templates was
sufficient; although, this may be due to the larger pixel scale
present on TESS (~21" as opposed to ~8” in ASAS-SN). Our
general conclusion is that CNNs should be trained on template
data that is as close to the data to be predicted on as possible.

4.2.1. Alternative Templates

In developing our CNN, we relied on using a combination of
milliquas and red clump light curves for our training,
validation, and testing sets. While this worked for our network,
we note that there are other templates one could use. To start,
we considered using stars in ASAS-SN with previously
measured P, (T. Jayasinghe et al. 2019, 2020; M. Pawlak
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Figure 6. The predictive efficiencies of different neural network architectures and training sets. The subpanels correspond to the rows in Table 3. Figures are labeled
by “small,” “medium,” “large,” and “extra large” to denote the network “size” when we vary the number of filters. We find there is a negligible difference in inferred
P, when we change the filter sizes. However, we highlight the significant improvement (500% increase) in the predictive power of our network when training on red
clump star templates compared to the milliquas templates, which are shown in the first row. The low recovery of periods in (i) and (j) demonstrates that a network
trained on 10° templates is ineffective at producing confident predictions when compared to a network trained on 10° templates. The minor improvement in (j) is due
to using nonrepeated templates. Similarly, the low recovery in (k) and (1) demonstrates that neither the “min-mask” method of interpolation or the 10x scaling of the
signal improved the quantity or quality of predictions compared to our base procedure. &

et al. 2019). However, these P, were recovered using a
different technique (a random forest classifier followed by a
Lomb-Scargle periodogram; see T. Jayasinghe et al. 2018,
2019). As a result, should we train our CNN on these catalogs,
it is possible the CNN would imprecisely learn, if the Lomb—
Scargle periods were inconsistent from the canonical P,
Alternatively, we considered using ASAS-SN stars with
measured P, from other missions that could be crossmatched
(e.g., MEarth, ZTF, or TESS). However, an incomplete set of
training, validation, and testing data could cause our CNN to
preferentially detect a subset of P, This would artificially
limit our ability to detect new P,,. Furthermore, some of the
P, that we would utilize for this method were also derived
from machine learning techniques (C24), which may be
incomplete or include spurious P,,. Determining the ideal
template set for our CNN architecture should be investigated,
but is beyond the scope of this work.

4.3. Training-set Size

We explore how many training templates are required to
sufficiently distinguish between true P, and noise. C22 used a
training set of size 10° examples. However, other astrophysical
CNNs have demonstrated effective training on sets ~10°
examples (J. Bialopetravicius et al. 2019; C. J. Burke et al.
2019; N. Monsalves et al. 2024). To explore how well our

CNN performs when trained on a smaller sample, we repeat
our training using set sizes of 10> and 10°.

Our 1 million butterpy simulations were then matched
up to a milliquas template one-to-one, and segmented into
training, validation, and testing sets with the typical 80:10:10
ratio. Additionally, we ensured that repeated milliquas light
curves only appeared in either the training, validation, or
testing sets. We downselected 10° examples to create the
smaller training set; this subset had examples with repetitive
milliquas templates. For the smaller set, we divide the sets
using a ratio of ~82:10:8; the reason for this is that we made a
calculation error when creating our milliquas training set that
caused our testing set to be slightly smaller and our training
sample to be slightly larger. However, the ~10* light curves
that remain in the validation and testing sets should still have
enough variance to allow the network to sample the entire
parameter space.

After training networks on both sets, we predicted on their
associated test sets to determine their accuracy. These results
are presented in Figures 6(a), (i). We find that the predictive
efficiency increases from 0.18% to 3.81% when increasing the
training set from 10° to 10°. This test helped us determine that
there is a clear improvement on predictions from networks
trained on 10° light curves, despite template repetition used in
generating the training set. This validates our use of 10°


https://github.com/m-schochet/asas-sn-cnn/blob/main/plots/figure6.ipynb
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examples in our training dataset for our CNN presented in
Section 3.

4.4. Repetition of Templates

Due to the limitations of our templates, we had to repeat
examples to sufficiently test how sample size affects the CNN
predictive efficiency. However, the resulting predictive
efficiency could have improved either due to the increased
training set size or if it was able to learn better with repeated
templates. Here, we develop a test to distinguish between these
possibilities.

To explore the difference in predictive efficiency of a set of
10° examples, we train on a set of 10° examples with and
without template repetition. We then predicted on their
associated test sets, and the results are presented in
Figures 6(1), (j). We find that the predictive efficiency
increases from 0.18% to 0.97% when training on examples
that do not repeat milliquas templates. This improvement,
albeit small, supports the use of unique training templates
when possible.

4.5. Masking Procedure

We examined the ideal procedure for the cubic interpolative
masking (Section 3.3) and aim to assess how our masking
routine impacts the predictive efficiency of our CNN. In our
initial procedure, we masked over all interpolated values of
NaN or oo to 0. However, this change may wash out low
signal areas of the transformation, resulting in an artificial
handicap on the periods we could detect. Here, we test a
secondary procedure in which we replaced values of NaN and
400 with the minimum non-NaN value from the transforma-
tion. We trained two CNNs, with the first using our initial
reassignment prescription and the second network using the
aforementioned “min-mask” method.

We predicted on their associated test sets. The results are
presented in Figures 6(a) and (k). We find that the predictive
efficiency decreases from 3.81% to 0.19% when implementing
the “min-mask” method. This test demonstrates that our CNN
is able to better distinguish between P, and noise when using
our initial methodology of replacing NaN/+oo values with 0
in the transformation.

4.6. Scaling of Periodic Signal

We choose to explore whether the low predictive capabil-
ities of our previously tested CNNs were due to a lack of
relevant signal to identify. We examine the effect of scaling of
our transformations prior to training. The idea of scaling would
be to amplify the low-power sections of the transformation,
which may include true P, information. By scaling the
background to remove low-amplitude signals, we aim to
artificially amplify the signal from P,,.

Our initial transformations were normalized to 8 bit integers
between [0, 255]. To test how this normalization process
affects our training, we rescale the entire transformation to
10x its regular power. Then, we set every pixel with value
>255-255, and trained the network on these new normalized
transformations. The affect of applying this scaling to the
transformations is shown in Figure 7.

Using a training set of 10° examples, we predicted on the
associated test set. These results are shown in Figures 6(a) and
(1). We find that our new normalization technique decreases
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Figure 7. The same transformations of ASASSN-V J050623.37-712251.8, the
same target presented in Figure 3, but using a different scaling value before
being fed into the neural network. While this does suggest that rotational
modulation is amplified by this method, it is not as effective as the base
procedure, as shown in Figure 6(a) versus 6(1). We use a scaling factor of
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the predictive efficiency from 3.81% to 2.83%. While there are
numerous rescaling techniques that could be explored, this
simple test validates that our initial rescaling technique results
in a better performing CNN.

5. Validation of Rotation Periods

We ran 85,904,442 of the transformed ASAS-SN light
curves through our determined “best” network (row 5 of
Table 3). We note that the number of transforms we predict on
is ~90% of our full ASAS-SN catalog. This is due to data loss
that occurred during our transformation routine performed on
HiPerGator. We crossmatch these remaining targets by their
IDs with ESA’s Gaia Data Release 2 (DR2) catalog. We query
the following parameters: parallax, B,, R,, and G magnitudes
(D. W. Evans et al. 2018; Gaia Collaboration et al. 2018).
Additionally, for our catalog of reported periods, we query
Gaia DR3 for stellar luminosity, radii, and spectroscopic
rotational broadening (M. Fouesneau et al. 2023). We then
used the Gaia XGBoost catalog (R. Andrae et al. 2023) to
include initial inferred values of the effective temperature
(Tefp), surface gravity (log(g)), and metallicity ([M/H]) of our
sample. We note that ~10% of our sample lacked at least one
of the aforementioned parameters, which is propagated into
our resulting catalog. We do not speculate as to why these
parameters are missing for each individual target.

5.1. Predicted Periods and Uncertainties

Our neural network does not supply true errors that can be
used to determine accurate predictions. Instead, we must
calibrate the errors and define what is a robust detection. As
mentioned earlier in this work, we define stars with fractional
uncertainties of <25% as robust. Here, we quantitatively
justify this cutoff by crossmatching our targets with other
works that have presented measured P, We first cross-
matched our predictions to the Gaia DR2-Kepler Input Catalog
(KIC) 1”7 crossmatch list from the Gaia-Kepler fun website
(found at https://gaia-kepler.fun). Then, we used the provided
KIC IDs to crossmatch our sample to the catalogs presented in
A. R. G. Santos et al. (2019, 2021b), whose P, were robustly
measured based on photometric variability; we identified
41,825 crossmatched stars. We then select targets whose
predicted P, from our neural network was accurate to within
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Figure 8. Justification for our reported “gold” sample being chosen via
fractional uncertainty on inferred P,.,. The top panel is shown with respect to
error, while the bottom is in fractional uncertainty-space. A stricter cutoff
results in a smaller reported sample, but black cuts indicate period catalogs of
similar sizes. By choosing fractional uncertainty as our metric of assessing
quality predictions, we maintain a more robust catalog of predictions at all
values of P, while still ensuring our reported catalog is substantial.

10% of the P, reported in A. R. G. Santos et al. (2019,
2021b), and compare our sample’s fractional uncertainty to the
raw o-values output from our CNN in Figure 8.

Figure 8 demonstrates that increasing the constraint on our
error cut improves the reliability of our sample, but reduces the
sample size. Furthermore, Figure 8§ demonstrates that using the
fractional uncertainty provides a balance, where we are still left
with many reliably predicted P, without removing too many
stars. We note that using the fractional uncertainty is better at
removing spurious short P, < 7 days. This is likely due to the
fractional uncertainty being sensitive to the errors and
predictions in conjunction, while an error cutoff is completely
independent of our predicted periods. Using a fractional
uncertainty cutoff of 25% resulted in a sample of 208,260 stars
with reliably predicted P, defined as our “gold” sample (data
model shown in Table 4). The remaining analyses presented in
this work only use the P, from this subset of stars.

We present the spatial distribution and color—magnitude
diagram of stars with reported P, in Figure 9. We
demonstrate that we have a high recovery of P, for giant
stars, although it is unlikely these periods are related to
rotation (Section 6.2). We detect P, for FGKM stars and
subgiants, and we do not detect P, for hotter stars, which is to
be expected (E. A. Avallone et al. 2022). We further discuss
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Table 4

Columns of Our Gold Sample of ASAS-SN Sources with Inferred Periods
Found on Zenodo (M. Schochet et al. 2025a)

Column Description

asas_sn_id Unique ASAS-SN identifier
period CNN Output P,y

sigma CNN Output P, error

dr3_source_id
dr2_source_id
edr3_source_id
KIC

tic_id

ra_rad

dec_rad

parallax

abs_g_mag

Tmag
phot_g_mean_mag
phot_bp_mean_mag
phot_rp_mean_mag
radius_val

lum_val

ruwe

vbroad

vbroad_error
catwise_w1
catwise_w2
mh_xgboost
teff_xgboost
logg_xgboost
in_training

in_xgboost_training

simulation_number

Gaia DR3 designation

Gaia DR2 designation

Gaia EDR3 designation

Kepler Input Catalog identifier

TESS Input Catalog identifier

Gaia DR2 R.A. (rad)

Gaia DR2 decl. (rad)

Gaia DR2 parallax (mas)

Gaia DR2 M (not extinction corrected)

TESS magnitude

Gaia DR2 G magnitude

Gaia DR2 BP magnitude

Gaia DR2 RP magnitude

Gaia DR2 photometric radius (R)

Gaia DR2 photometric luminosity (L)

Gaia DR2 renormalized unit weight error

Gaia DR3 spectroscopic rotational broadening (km
sfl)

Gaia DR3 spectroscopic rotational broadening error

CatWISE W1 (3.4 um) magnitude

CatWISE W2 (4.6 um) magnitude

Gaia XGBoost catalog (R. Andrae et al. 2023)
[M/H] (dex)

Gaia XGBoost catalog (R. Andrae et al. 2023)
effective temperature (K)

Gaia XGBoost catalog (R. Andrae et al. 2023) sur-
face gravity (dex)

“yes” or “no” whether this object is in the training set
for this work

“True” or “False” whether this object was in the
training set for the XGBoost parameters

what simulation was injected into this object if it was
in the training set

the limitations of our presented P, by comparing to external

catalogs.

5.2. Comparison to Literature Periods

We validate our “gold” sample by crossmatching our

predicted P, with other publicly available catalogs. We aim
to validate P, across a range of spectral types and determine
the limitations of our methodology. Fortunately, we had many
catalogs to compare to. We select to compare our “gold”
sample to the following catalogs: (I) 55,232 stars with
measured P, from Kepler (A. R. G. Santos et al. 2019,
2021b); (II) 40,553 stars with measured P, from ZTF
(Y. L. Lu et al. 2022); (IT) 7,245/32,159 stars with measured
P« from TESS/Kepler Bonus light curves, respectively
(C24/C25); (IV) 13,504 stars with measured P,y from TESS
(R. J. Holcomb et al. 2022); (V) 10,909 stars with measured
P.o: from TESS (I. L. Colman et al. 2024); and (VI) 53,169
stars with measured P, from ASAS-SN (VSX, C. T. Christy
et al. 2023).” We also note that some stars have provided

7 The ASAS-SN Catalog of Variable Stars can be downloaded at https://

asas-sn.osu.edu/variables.
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Figure 9. The detection fraction of our “gold” sample with inferred P,
spatially distributed across the sky (top) and in color-magnitude space
(bottom). We highlight our higher detection fraction along the Galactic plane.
In addition, we find that we have a high recovery of periods for stars along the
giant branch. This reinforces that our network is most sensitive to bright
variable sources.

P, from several of these catalogs; we highlight this overlap in
Appendix C.

Our resulting crossmatch allows us to compare our inferred
P, to tens to thousands of measured P, from more traditional
methods of detection. We compare the measured versus
inferred P,, between the aforementioned catalogs and this
work in Figure 10. We find that our P, are in good agreement
with those presented in Y. L. Lu et al. (2022), A. R. G. Santos
et al. (2019, 2021b), and C24. Meanwhile, we find slight
differences in P,, between our work and the remaining
catalogs. In particular, we find that our predicted P, are
biased toward longer periods as compared to P,, measured
from TESS (R. J. Holcomb et al. 2022; I. L. Colman et al.
2024). Furthermore, as compared to C25, we find an increased
scatter slightly offset from a 1:1 agreement in P, whereas
compared to R. J. Holcomb et al. (2022) and I. L. Colman et al.
(2024), our P, are scattered around a 2:1 agreement. These
differences are likely due to a combination of our network’s
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inability to predict very short P, and known issues with
detecting longer P, in TESS observations.

In order to further identify the limitations of our presented
method, we compare our predicted P, from this work against
P, presented in VSX in Figure 11. This highlights how our
neural network is performing on a range of different variable
types from spotted rotational variables to Cepheids to eclipsing
binaries.

We find that our presented P, are in 1:1 agreement with the
majority of spotted rotational variables, semiregular variables,
long irregular variables, Cepheid-type variables, young stellar
objects, and stars of unknown variable type. On the other hand,
our network struggles with RR Lyrae—type, Delta Scuti-type,
and eclipsing binary—type variables. We downloaded the TESS
light curve for a subset of stars in our catalog that were
classified in the VSX and present these light curves phase-
folded in Figure 12. We find that we are able to predict P,
reliably for nonrotational variability. However, we are unable
to accurately recover exact periods for eclipsing binaries. This
is likely due to the limited baseline observed across each
eclipse in the ASAS-SN observations. Since ASAS-SN cannot
observe continuously through either the primary or secondary
eclipses due to its observing strategy, all observations taken
during an eclipse will be to zeroth-order randomly distributed
within the duration of the eclipse. A more thorough sampling
of the eclipses is likely needed for our network to robustly
infer eclipsing binary periods (although the survey is not
necessarily the prohibitive factor here; see, e.g., D. M. Rowan
et al. 2023).

6. Observed Trends across Different Subpopulations

We explore observed trends across four different subpopu-
lations: hot stars, giants, cool dwarfs, and subgiants. We divide
our sample into these subpopulations based on empirical
relationships derived from Gaia B, — R, color and Mg
magnitude. In particular, we classify hot stars as those
with temperatures greater than the Kraft break (Top>
6500K; R. P. Kraft 1967), which roughly corresponds to
B, — R, < 0.6 (A. C. Beyer & R. J. White 2024). This is
further verified by the color—T.¢ relationships presented in
M. J. Pecaut & E. E. Mamajek (2013) and by E. Mamajek.®
For the remaining three populations, we divide them based on
the following relations. Giants must satisfy the following
criteria:

Mg < 2(B, — Ry — 4. 3

Whereas cool dwarfs must satisfy the following criteria:

Mg > 1.4(B, — Rp) + 2.8. )

Any stars that were not categorized as hot stars, cool main-
sequence dwarfs, or giants were categorized as subgiants
(Figure 13).

6.1. Hot Stars

As hot stars possess negligible surface convection zones, we
expect these sources to be less spotted and more rapidly
rotating than cooler stars. To verify if our measured P,y are
physical, we use the spectroscopic rotational broadening,
Vbroads derived from Gaia. With a combination of vy,,,q and

8 https://www.pas.rochester.edu/~emamajek /EEM_dwarf UBVIJHK_

colors_Teff.txt
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Figure 10. Validation of our inferred P, as compared to several P, catalogs in the literature. Points are colored by Gaia B, — R,,, except for the white circles with
black borders, which have periods at P, = 25 4+ 3 days (near the sidereal alias). We present crossmatches between: (a) Y. L. Lu et al. (2022), (b) C25, (c)
A.R. G. Santos et al. (2019, 2021b), (d) R. J. Holcomb et al. (2022), (e) C24, and (f) I. L. Colman et al. (2024). We present the 1:1 line as the dashed red line and the
90% interval as the blue dotted lines. We plot the 1:2 and 2:1 relationships as the red dotted lines. The shaded region denotes the 25% errors off of the 1:1 trend line
between our populations. We find that the majority of our inferred P, are in agreement with various catalogs, with the exception of the short P, < 3 days stars
measured with TESS (R. J. Holcomb et al. 2022; I. L. Colman et al. 2024). &

P, we are able to assess if these stars have reasonable
inclinations.

To ensure a robust sample, we discarded any stars with
P.ot = 25 £ 3 days to ensure we removed any sidereal aliasing
that may heavily bias this sample. Additionally, we discarded
sources that did not have reported Gaia vy,g. Finally, we
removed stars with vy,,,q measurements below the threshold of
accurate broadening detection (Vpr0aq < 10 km s~ Y. Frémat
et al. 2023). This resulted in a final sample of 146 hot stars.

We computed a PS"“) via
S 2nRfm] (10)
Sin(i)  Vprogalsin(i) km s~

where R is the stellar radius provided by Gaia. We present our
inferred periods versus “’(“) in Figure 14. We find that nearly

all of our inferred perlods are spurious for a sample of stars
that are likely rapidly rotating with minimal observable
photospheric spots. This result suggests that the derived P,
for these hot stars are likely nonphysical, although some of
these may be real periods from background stars or smaller
companions. Further understanding of why the presented
neural network is detecting these P, is saved for future work.
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6.2. Oscillating Giants

We aim to determine whether we could identify the oscillatory
frequencies of maximum power, Vn,y, in luminous asteroseismic
giants, similarly to C25. To calculate 4,,x, we adopt the
following relationship (see, e.g., T. M. Brown et al. 1991;
H. Kjeldsen & T. R. Bedding 1995; W. J. Chaplin et al. 2011)

—0.5
Vmax 8 7:aff
— =, |7 | (a1
Vmax,® 85 7:3ff,1~?

Here, g is the surface gravity of the star, and f, is an

empirically derived correction function to ensure the relations
scale appropriately for most stars across the possible physical
parameter space (for a deeper discussion, see M. H. Pinsonneault
et al. 2025). We adopt Teo, = 5772K, g = 10**® (both
A. Pr3a et al. 2016), Umax,o = 3076 pHz, and fl,m,le 1 (both
M. H. Pinsonneault et al. 2025). We derive Ty and g from the
catalog of R. Andrae et al. (2023), which provides machine
learning derived parameters (XGBoost algorithm; T. Chen &
C. Guestrin 2016) trained on Sloan Digital Sky Survey (SDSS)
APOGEE DR17 (Abdurro’uf et al. 2022). Approximately ~88%
of our giant sample have available derived T and log(g) from
this catalog. We use these derived parameters to then calculate
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Figure 11. A comparison between our inferred P,, and those presented in C. T. Christy et al. (2023). We separate our sample by the assigned variable type
from VSX. We show the comparison for spotted rotational (black, top left), semiregular (brown, top center), long irregular (purple, top right), Cepheid-type (teal,
center left), unknown variable type (dark green, true center), young stellar objects (light green, center right), Delta Scuti—type (maroon, bottom left), RR Lyrae—type
(orange, bottom center), and eclipsing binaries (blue, bottom right). The shaded regions here again denote the 25% fractional uncertainty range at different value of
P, These plots demonstrate an extremely low recovery of the true P, for short-term variables like RR Lyrae-type and Delta Scuti—type stars. In addition, our
network is able to recover P, for spotted, semiregular, and irregular variables well. The clumping of stars at P, < 3 days are due to the limitations of our

network. &

Umax- We convert these v, into a period such that we could
compare our inferred P, to the oscillatory period of maximum
power (Figure 15).

We find that our inferred periods are closely correlated to the
derived v,,x. We continue to find a significant fraction of stars
with inferred P, = 25 £ 3 days, corresponding to the sidereal
alias. We find that B, < V%;x,XGBoost are on average redder than
the population with inferred P > V;;X,XGBOOS[. Note that 76.5%
of our remaining giant sample possess Po; > Vs xGBoost-

We aim to determine whether the offset between inferred
P, and derived 14, is due to our neural network or
uncertainties from the XGBoost parameters. As such, we
crossmatched our giant sample to the APOKASC-3 catalog
(M. H. Pinsonneault et al. 2025), which has well-calibrated

14

asteroseismic parameters for a sample of stars contained in
both SDSS APOGEE and Kepler. We find 146 stars in our
sample that overlap with the APOKASC-3 catalog (Figure 16).
We demonstrate that our inferred P, are not offset from the
APOKASC-3 ., wWhich leads us to conclude that our
inferred P, for giants are generally consistent with 24,,x, and it
is likely the XGBoost parameters are slightly offset from the
true values. However, we caution that additional validation is
required should future work choose to use our our neural
network to derive vy,y.

6.3. Cool Dwarfs

We aim to verify that our catalog of inferred P, for cool
stars displays the commonly identified “intermediate period
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Figure 12. TESS and ASAS-SN phase-folded light curves for a (a) Cepheid,
(b) young stellar object, (c) spotted rotational variable, and (d) eclipsing
binary, as categorized by the VSX. Our network is able to recover
nonrotational variables (panels (a) and (b)). Our network is also able to
recover spot-driven rotational variability (panel (c)), though there are offsets
from previous work. We additionally highlight the network’s ability to recover
the true period of eclipsing binaries (panel (d)). &

gap” that has been seen across several different studies
(e.g., A. McQuillan et al. 2013; J. R. A. Davenport 2017,
J. R. A. Davenport & K. R. Covey 2018; T. Reinhold et al.
2019; J. L. Curtis et al. 2020; F. Spada & A. C. Lanzafame
2020; T. A. Gordon et al. 2021; Y. L. Lu et al. 2022).
Before we proceeded to vet these periods, we wanted to
ensure that the reported periods are representative of the
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Figure 13. An H-R diagram of our “gold” sample (208,260 inferred P,,,) from
our neural network. We highlight our empirical relationships to distinguish
between four subpopulations: hot stars (purple), oscillating giants (yellow),
cool main-sequence stars (red), and subgiants (orange). &
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Figure 14. A comparison between our inferred P, and the computed Beee for
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our hot star subpopulation. The red lines indicate curves of constant
inclination. The shaded region (yellow) denotes nonphysical inclinations.
Because all of our inferred P, for hot stars lie within this nonphysical region,
we conclude our hot star periods are likely spurious.

periods found in nature. We plot the Gaia photometric
magnitude distribution of our dwarfs and oscillating giants in
Figure 17. This figure highlights the fact that the majority of
our inferred periods are from bright sources; however, there
are a substantial number of stars out to much dimmer
magnitudes. In the end, to demonstrate the highest-fidelity
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Figure 16. A comparison of v}, computed from the APOKASC-3 catalog to
our inferred P, We demonstrate that the majority of our matched P, are in
agreement with the asteroseismic-derived v}, values from APOKASC-3.
Thus, we demonstrate that our inferred P, for giants are likely astrophysical
and are correlated with observed oscillatory periods. S

catalog of cool dwarf periods, we decided to cut out any
dwarfs dimmer than a Gaia photometric magnitude of 15. This
removed a significant fraction of stars near the sidereal period
(~27 days), and reduced our cool dwarf sample from 38,860 to
29,473 stars.
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Figure 17. A 2D histogram of the Gaia photometric magnitudes for our
oscillating giant and dwarf subsamples compared to the full ASAS-SN
catalog. This highlights both that the majority of our oscillating giant periods
are from the brightest stars, and that our inferred periods for dwarfs trail off to
much dimmer magnitudes. This suggests that our inferred periods for the
dimmest stars—especially for cool dwarfs—may be spurious.

We use the “period gap” boundaries defined in T. A. Gordon
et al. (2021): each line is defined as

Bypper = A(G — Grp — x0) + B(G — Ggp — x0)'/2. (12)

Parameters A and B have units of days. For the upper edge,
A = 68.2277, B= —43.7301, and xy = —0.0653; for the lower
edge, A = 34.0405, B = —2.6183, and xy,=0.3510. We
crossmatch the P, presented in A. R. G. Santos et al.
(2019, 2021b) with Gaia to compare to our sample. We plot
our inferred periods alongside the Santos periods in Figure 18.
Overall, we find that our inferred cool dwarf periods line up
quite well with the periods from the Santos catalogs, except for
the clumping of stars at P, = 25 £ 3, which we attribute to
sidereal aliasing. We note that although the cut to remove the
dimmest stars did reduce the number of periods found at this
alias, the alias is still difficult to entirely remove from our
sample; periods close to this value should be treated with
caution. We also note that the period gap is more accurately an
underdensity in period—color space, and that both our
predictions and those of the Santos catalogs do contain a
few predictions within the gap boundaries.

6.4. Subgiants

We compare our subgiant population to the catalog of
E. M. Leiner et al. (2022; Figure 19) to determine if our
inferred P, are physical. We find there are 574 stars
overlapping between both catalogs and that our network infers
an accurate P, for the majority of stars matched, all of which
are anomalous sub-subgiants or RSCVns. We are able to
recover 467 (81.35%) of the E. M. Leiner et al. (2022) catalog
to within 10% of their period as reported in the American
Association of Variable Star Observers Variable Star Index.
Overall, we find the average percent difference across these
467 stars is <1.9%, suggesting our network excels at inferring
true P, for unusually active and rapidly rotating subgiants.
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Figure 18. Our inferred P, of our brightest cool dwarfs (left) compared to
those from the A. R. G. Santos et al. (2019, 2021b) catalogs (right). We mark
the edges of the “period gap” (T. A. Gordon et al. 2021) in both panels with
the black lines. Our sample shows a similar distribution compared to Kepler,
with the exception the large clumping of stars at P, = 25 £ 3 days (sidereal
alias). &
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Figure 19. A comparison between our inferred P, and the P, taken from the
American Association of Variable Star Observers Variable Star Index for stars
in E. M. Leiner et al. (2022). We find that the majority of our P, are within
~10% agreement with those presented in E. M. Leiner et al. (2022). Several
stars at short periods (P, < 5 days) are in disagreement, which is unsurprising
due to the limitations of our neural network.

7. Conclusion

We present a new neural network trained to infer variability
periods for stars observed by ASAS-SN. We trained our neural
network on simulated light curves (Z. R. Claytor et al. 2022).
We performed various tests to validate the robustness of our
neural network, including changing our training set and using
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different network architectures. From the full ASAS-SN
catalog, we are able to infer 208,260 periods. Note that
196,610 of these stars were matched with Gaia counterparts
and explored in Section 6. We provide 108,361 stars (55.11%)
categorized as giants, 38,860 stars (19.76%) categorized as
cool dwarfs, 45,909 (23.35%) categorized as subgiants, and
3480 (1.77%) categorized as hot stars. Within those predic-
tions, we validate a subset of those periods and report the
following:

1. We infer 3480 periods for hot stars (Gaia B, — R, < 0.6)
that we determine are likely spurious (Section 6.1).

2. We infer 108,361 periods from luminous giant stars.
We find that these periods correspond to expected
oscillatory frequencies derived from asteroseismic rela-
tions (Section 6.2).

3. We infer 29,473 periods for bright cool main-sequence
dwarfs, 26,593 of which are new in ASAS-SN. By
crossmatching our rotation periods, we find our catalog
follows known trends in period—color space, including a
dearth of measured P, in the intermediate period gap
(Section 6.3).

4. We infer 45,909 periods for a mixed sample of stars that
includes subgiants, active RSCVn-type systems, and
anomalous sub-subgiants, which are in agreement with
previous works (Section 6.4).

Our results highlight the strengths and limitations of our
network architecture. We are reliably able to infer periods
driven by spotted photometric variability and asteroseismic
oscillations. On the other hand, our architecture struggles to
detect confident rotation periods for hot stars, stars with
P.o¢ < 7 days, and stars with periods near the sidereal month
(~27 days). Detecting rotation periods in hot stars is under-
standably difficult due to limited observable spots, while the
sidereal aliasing for variability periods in ASAS-SN observa-
tions has been well documented (T. Jayasinghe et al. 2020).
For the recovery of the shortest period variables, we can likely
attribute the failed detections to intrinsic network architecture
problems (as can be seen in the networks of C22, C24,
and C25). Regardless, we successfully demonstrate that we are
able to recover P, from sparsely sampled ground-based
observations, and that our network has an overall periodicity
recovery rate of 0.2%.

We believe this work can serve as the framework for
applying deep-learning methods to other ground-based surveys
like LSST as well as space-based observatories with complex
sampling such as the Nancy Grace Roman mission. Taking the
conclusions of this study at face value, we can begin to
contextualize our work within the scope of these surveys.

LSST is poised to observe more than 10 billion stars over its
10 yr baseline. Under the assumption that a similar network to
ours with 1/10 the efficacy was run on the 10 yr LSST data,
we expect LSST to yield of the order of 500,000 stellar
rotation periods. However, this is a wildly conservative
estimate. Early work on profiling the potential of Rubin
suggested that the 10 yr baseline could optimistically measure
rotation periods at around 70%-80% completeness for cool
stars (Teer < 4500K) brighter than an r-magnitude of 23
(S. L. Hawley et al. 2016). As a result, with a more optimistic
outlook on the potential of LSST science, we expect that a
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similar network to ours could feasibly infer millions of stellar
rotation periods.

Meanwhile, the upcoming Nancy Grace Roman mission is
expected to launch before mid-2027. One of its core surveys is
the Galactic Bulge Time Domain Survey, which should
observe six bulge fields continuously over six separate
72 day sectors. While the sampling rate of Roman is still
under consideration, it is already expected that the cadence
will be more complicated and irregular than other space-based
photometric missions like Kepler or TESS. Preliminary
modeling of the Roman stellar rotation period yield has placed
expectations in the range of 0.05%, resulting in an expected
yield of around 100,000 rotation periods (Z. Claytor &
J. Tayar 2024).
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at doi:10.5281/zenodo.15848601. In particular, we host the
following files:

1. allgaiadata.parg—Gaia DR2 colors, magnitudes,
and parallaxes crossmatched by ID to all ASAS-SN stars
in our sample.

2. reportable.csv—The reported rotation periods for
our best catalog of predictions with a fractional
uncertainty below 25% along with ancillary Gaia DR2
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and DR3 information. We provide a more detailed
description of the information contained in this table in
Table 4.

3. training clumpstars.csv—The list of red
clump stars we used to create our training set.
4. allnetworkpredictions.zip—The  predicted

rotation periods from all four neural networks explored
in this work.

5. asassn_cnn _model weights.zip—The model
weights for all of the neural networks described in
Section 4.

We also host all of the Jupyter Notebooks made in this work
on Zenodo (M. Schochet et al. 2025b) at doi:10.5281/
zenodo.17387593.

Additionally, all other code for this project is hosted on
GitHub at https://github.com/m-schochet/asas-sn-cnn. We
note that the entire ASAS-SN dataset—as either transforma-
tions or raw data—is substantially too large to host on any
external platform; if these files are of interest, please reach out
to the authors.

Appendix A
Injection Algorithm

Each of our ASAS-SN noise template light curves can be
expressed as a list, &, which contains tuple values representing
each data point.

¢ = [¢i(ti)a ¢ii(tii), ~~,¢n(tn)] (Al)
where lowercase ¢ variables represent flux measurements, and
t variables represent time stamps. Given that the butterpy
simulations are created at 30 minutes cadence, the first step in
our injection algorithm is to linearly interpolate the simulation
fluxes to the time stamps of our noise light curve ®. If we
represent our butterpy simulations as ©, where (times
given in minutes)

O = [0i(1), 02(12), .00 (1)] (A2)

th=1+30n—1); n=1,23. (A3)

Then for each simulation—template pair, the full algorithm says
that our interpolated flux, T, is

I' = [, %), Yu(to)] (A4)

(t ) _ an * [(en*(thrl - tn)) + (0n+l*(tn - tn))]
nfin median(©)*(ty.1 — f,) '

(A5)
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Appendix B
“Chunky Lomb-Scargle” Algorithm

The following algorithm is taken essentially line by line
from the LS wavelet function found in the SkyPatrol
GitHub (https://github.com/asas-sn/skypatrol/tree/master/
pyasassn/wavelet.py) with minimal adjustments to variable
names for readability.

import numpy as np
fromastropy.timeseries import LombScargle

def LS wavelet (times, frequencies, timestamps,
fluxes, fluxerrors, tradeoff) :

:param times: Array of times where the wavelet power
should be evaluated

:param frequencies: Array of frequencies where the
wavelet power should be evaluated

:param timestamps: Input time series time stamps

:paramfluxes: Input time series dynamical measurement
(fluxes in this scenario)

:paramfluxerrors: Measurement uncertainties for the
"fluxes" time series

:param tradeoff: Tradeoff between time and frequency
resolution (has been preset to 2 throughout this work)

array =np.full (len(times), len(frequencies), np.nan)

def window (x) :
return np.exp (-x2/2)

for j, £ in enumerate (frequencies) :

dt = tradeoff "1/f

for i, t inenumerate (times) :

w=window ( (x-t) /dt)

m=np.isfinite(np.nan to num(fluxerrors/
window, nan=np.inf))

1ls =LombScargle (times[m
errors/window) [m])

p =float (1ls.power (f, normalization="psd”))

p/= (np.sqgrt (2 *np.pi) *dt)

arrayli, jl =p

1, frequencies[m], dy= (flux-

return array

Appendix C
Crossmatched Catalogs

For the analysis in Section 5.2, we present the number of
overlapping crossmatched stars between archival works in
Table 5.
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Table 5
Overlap of Objects in Different Catalogs

Y. L. Lu

A.R. G. Santos et al.  Z. R. Claytor et al.

Z. R. Claytor &

C.T. Christy etal. R.J. Holcomb 1. L. Colman et al.

Catalog et al. (2022) (2020, 2021a) (2024b) J. Tayar (2025) (2023) et al. (2022) (2024)

Lu et al. X X X X X X X

Santos et al. ~14 X X X X X X

Claytor et al. ~0 ~1 X X X X X

Claytor and 16 20,687 ~1 X X X X
Tayar

Christy et al. 369 ~61 89 49 X X X

Holcomb ~108 ~32 161 ~10 443 X X
et al.

Colman ~43 ~34 216 ~11 496 4863 X
et al.

Note. Here we show overlapping stars between the catalogs that we compare to. Comparisons with integers are absolute overlaps, while comparisons with a “~

“w

sign

indicate lower limits of overlapped objects (to account for any missed overlapping objects when matching by identifiers in different surveys).
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